BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 28311434)

  • 1. The effect of vapor pressure on stomatal control of gas exchange in Douglas fir (Pseudotsuga menziesii) saplings.
    Meinzer FC
    Oecologia; 1982 Aug; 54(2):236-242. PubMed ID: 28311434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Models of steady-state and dynamic gas exchange responses to vapor pressure and light in Douglas fir (Pseudotsuga menziesii) saplings.
    Meinzer FC
    Oecologia; 1982 Dec; 55(3):403-408. PubMed ID: 28309982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of light on stomatal control of gas exchange in Douglas fir (Pseudotsuga menziesii) saplings.
    Meinzer FC
    Oecologia; 1982 Aug; 54(2):270-274. PubMed ID: 28311439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphology and Stomatal Function of Douglas Fir Needles Exposed to Climate Change: Elevated CO2 and Temperature.
    Apple ME; Olszyk DM; Ormrod DP; Lewis J; Southworth D; Tingey DT
    Int J Plant Sci; 2000 Jan; 161(1):127-132. PubMed ID: 10648202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves.
    Zait Y; Shapira O; Schwartz A
    Plant Cell Environ; 2017 Jul; 40(7):1143-1152. PubMed ID: 28098339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties.
    Meinzer FC; Goldstein G; Jackson P; Holbrook NM; Gutiérrez MV; Cavelier J
    Oecologia; 1995 Apr; 101(4):514-522. PubMed ID: 28306968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.
    Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A
    Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transpiration Response of Cotton to Vapor Pressure Deficit and Its Relationship With Stomatal Traits.
    Devi MJ; Reddy VR
    Front Plant Sci; 2018; 9():1572. PubMed ID: 30420866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora.
    Shirke PA; Pathre UV
    J Exp Bot; 2004 Sep; 55(405):2111-20. PubMed ID: 15310819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.
    Rasheed F; Dreyer E; Richard B; Brignolas F; Brendel O; Le Thiec D
    Plant Cell Environ; 2015 Apr; 38(4):670-84. PubMed ID: 25099629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Photosynthesis and Stomatal Conductance in Ricinus communis L. (Castor Bean) by Leaf to Air Vapor Pressure Deficit.
    Dai Z; Edwards GE; Ku MS
    Plant Physiol; 1992 Aug; 99(4):1426-34. PubMed ID: 16669054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.
    Marchin RM; Broadhead AA; Bostic LE; Dunn RR; Hoffmann WA
    Plant Cell Environ; 2016 Oct; 39(10):2221-34. PubMed ID: 27392307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal Sensitivity to Vapor Pressure Deficit and the Loss of Hydraulic Conductivity Are Coordinated in
    Fan DY; Dang QL; Xu CY; Jiang CD; Zhang WF; Xu XW; Yang XF; Zhang SR
    Front Plant Sci; 2020; 11():1248. PubMed ID: 32922423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Vapor Pressure Deficit on Gas Exchange in Wild-Type and Abscisic Acid-Insensitive Plants.
    Cernusak LA; Goldsmith GR; Arend M; Siegwolf RTW
    Plant Physiol; 2019 Dec; 181(4):1573-1586. PubMed ID: 31562233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of gas exchange to humidity in populations of three herbs from environments differing in atmospheric water.
    Bunce JA
    Oecologia; 1986 Dec; 71(1):117-120. PubMed ID: 28312092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir.
    Woodruff DR; McCulloh KA; Warren JM; Meinzer FC; Lachenbruch B
    Plant Cell Environ; 2007 May; 30(5):559-69. PubMed ID: 17407534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A possible evaporation site in the guard cell wall and the influence of leaf structure on the humidity response by stomata of woody plants.
    Appleby RF; Davies WJ
    Oecologia; 1983 Jan; 56(1):30-40. PubMed ID: 28310766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.
    Carins Murphy MR; Jordan GJ; Brodribb TJ
    Plant Cell Environ; 2014 Jan; 37(1):124-31. PubMed ID: 23682831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of branch-level gas exchange of boreal trees: roles of shoot water potential and vapor pressure difference.
    Dang QL; Margolis HA; Coyea MR; Sy M; Collatz GJ
    Tree Physiol; 1997; 17(8_9):521-535. PubMed ID: 14759825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.