These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28311434)

  • 21. Height-related trends in stomatal sensitivity to leaf-to-air vapour pressure deficit in a tall conifer.
    Woodruff DR; Meinzer FC; McCulloh KA
    J Exp Bot; 2010; 61(1):203-10. PubMed ID: 19933710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stomatal sensitivity to carbon dioxide and humidity: a comparison of two c(3) and two c(4) grass species.
    Morison JI; Gifford RM
    Plant Physiol; 1983 Apr; 71(4):789-96. PubMed ID: 16662909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water availability as dominant control of heat stress responses in two contrasting tree species.
    Ruehr NK; Gast A; Weber C; Daub B; Arneth A
    Tree Physiol; 2016 Feb; 36(2):164-78. PubMed ID: 26491055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stomatal dynamics and its importance to carbon gain in two rainforest Piper species : I. VPD effects on the transient stomatal response to lightflecks.
    Tinoco-Ojanguren C; Pearcy RW
    Oecologia; 1993 Jun; 94(3):388-394. PubMed ID: 28313676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The evolution of mechanisms driving the stomatal response to vapor pressure deficit.
    McAdam SA; Brodribb TJ
    Plant Physiol; 2015 Mar; 167(3):833-43. PubMed ID: 25637454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pseudothecia of Swiss needle cast fungus, Phaeocryptopus gaeumannii, physically block stomata of Douglas fir, reducing CO
    Manter DK; Bond BJ; Kavanagh KL; Rosso PH; Filip GM
    New Phytol; 2000 Dec; 148(3):481-491. PubMed ID: 33863020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Characteristics of canopy stomatal conductance of Platycladus orientalis and its responses to environmental factors in the mountainous area of North China].
    Liu WN; Jia JB; Yu XX; Jia GD; Hou GR
    Ying Yong Sheng Tai Xue Bao; 2017 Oct; 28(10):3217-3226. PubMed ID: 29692139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period].
    Schulze ED; Lange OL; Koch W
    Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia.
    Kosugi Y; Takanashi S; Matsuo N; Nik AR
    Tree Physiol; 2009 Apr; 29(4):505-15. PubMed ID: 19203974
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?
    Aliniaeifard S; Malcolm Matamoros P; van Meeteren U
    Physiol Plant; 2014 Dec; 152(4):688-99. PubMed ID: 24773210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects.
    Oren R; Sperry JS; Ewers BE; Pataki DE; Phillips N; Megonigal JP
    Oecologia; 2001 Jan; 126(1):21-29. PubMed ID: 28547434
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species.
    El-Sharkawy MA; Cock JH; Del Pilar Hernandez A
    Photosynth Res; 1985 Jan; 7(2):137-49. PubMed ID: 24443083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of Nitrate Application on Amaranthus powellii Wats : II. Stomatal Response to Vapor Pressure Difference is Consistent with Optimization of Stomatal Conductance.
    Hunt ER; Weber JA; Gates DM
    Plant Physiol; 1985 Nov; 79(3):614-8. PubMed ID: 16664460
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ambient aerosol increases minimum leaf conductance and alters the aperture-flux relationship as stomata respond to vapor pressure deficit (VPD).
    Grantz DA; Zinsmeister D; Burkhardt J
    New Phytol; 2018 Jul; 219(1):275-286. PubMed ID: 29600514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generalized hydromechanical model for stomatal responses to hydraulic perturbations.
    Kwon HW; Choi MY
    J Theor Biol; 2014 Jan; 340():119-30. PubMed ID: 24060618
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydraulic adjustment of maple saplings to canopy gap formation.
    Maherali H; DeLucia EH; Sipe TW
    Oecologia; 1997 Nov; 112(4):472-480. PubMed ID: 28307623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patchy stomatal behavior during midday depression of leaf CO₂ exchange in tropical trees.
    Kamakura M; Kosugi Y; Takanashi S; Matsumoto K; Okumura M; Philip E
    Tree Physiol; 2011 Feb; 31(2):160-8. PubMed ID: 21383025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Needle anatomy changes with increasing tree age in Douglas-fir.
    Apple M; Tiekotter K; Snow M; Young J; Soeldner A; Phillips D; Tingey D; Bond BJ
    Tree Physiol; 2002 Feb; 22(2-3):129-36. PubMed ID: 11830409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Environmental control of CO
    Benecke U; Schulze E-; Matyssek R; Havranek WM
    Oecologia; 1981 Aug; 50(1):54-61. PubMed ID: 28310061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves.
    Martins SC; McAdam SA; Deans RM; DaMatta FM; Brodribb TJ
    Plant Cell Environ; 2016 Mar; 39(3):694-705. PubMed ID: 26510650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.