These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 28311717)

  • 1. Utilization of evergreen and decidous oaks by the Californian oak moth Phryganidia californica.
    Puttick GM
    Oecologia; 1986 Mar; 68(4):589-594. PubMed ID: 28311717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal variation in leaf chemistry of the coast live oak Quercus agrifolia and implications for the California oak moth Phryganidia californica.
    Mauffette Y; Oechel WC
    Oecologia; 1989 Jun; 79(4):439-445. PubMed ID: 28313475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees.
    Hollinger DY
    Oecologia; 1986 Sep; 70(2):291-297. PubMed ID: 28311672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of oak (Quercus, Fagaceae) seedling physiology during summer drought in southern California.
    Mahall BE; Tyler CM; Cole ES; Mata C
    Am J Bot; 2009 Apr; 96(4):751-61. PubMed ID: 21628230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular differentiation and diversity among the California red oaks (Fagaceae; Quercus section Lobatae).
    Dodd RS; Kashani N
    Theor Appl Genet; 2003 Sep; 107(5):884-92. PubMed ID: 12761621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seasonal variation of leaf wax n-alkane production and δ(2)H values from the evergreen oak tree, Quercus agrifolia.
    Sachse D; Dawson TE; Kahmen A
    Isotopes Environ Health Stud; 2015; 51(1):124-42. PubMed ID: 25704898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of oak seedlings to increased herbivory and drought: a possible trade-off?
    Peláez M; López-Sánchez A; Wilson Fernandes G; Dirzo R; Rodríguez-Calcerrada J; Perea R
    Ann Bot; 2024 Oct; ():. PubMed ID: 39383257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis.
    Holland V; Koller S; Brüggemann W
    Plant Biol (Stuttg); 2014 Jul; 16(4):801-8. PubMed ID: 24112772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability.
    Turnbull MH; Whitehead D; Tissue DT; Schuster WS; Brown KJ; Engel VC; Griffin KL
    Oecologia; 2002 Feb; 130(4):515-524. PubMed ID: 28547252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.
    Shestakova TA; Aguilera M; Ferrio JP; Gutiérrez E; Voltas J
    Tree Physiol; 2014 Aug; 34(8):819-38. PubMed ID: 24870366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demography and recruitment limitations of three oak species in California.
    Tyler CM; Kuhn B; Davis FW
    Q Rev Biol; 2006 Jun; 81(2):127-52. PubMed ID: 16776062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon assimilation and water-use efficiency by neighboring Mediterranean-climate oaks that differ in water access.
    Goulden ML
    Tree Physiol; 1996 Apr; 16(4):417-24. PubMed ID: 14871727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf abscission phenology of a scrub oak: consequences for growth and survivorship of a leaf mining beetle.
    Waddell KJ; Fox CW; White KD; Mousseau TA
    Oecologia; 2001 Apr; 127(2):251-258. PubMed ID: 24577657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The diversification of terpene emissions in Mediterranean oaks: lessons from a study of Quercus suber, Quercus canariensis and its hybrid Quercus afares.
    Welter S; Bracho-Nuñez A; Mir C; Zimmer I; Kesselmeier J; Lumaret R; Schnitzler JP; Staudt M
    Tree Physiol; 2012 Sep; 32(9):1082-91. PubMed ID: 22848089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation to oak and other fibrous, phenolic-rich foliage by a small mammal, Neotoma fuscipes.
    Atsatt PR; Ingram T
    Oecologia; 1983 Oct; 60(1):135-142. PubMed ID: 28310547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas exchange and leaf aging in an evergreen oak: causes and consequences for leaf carbon balance and canopy respiration.
    Rodríguez-Calcerrada J; Limousin JM; Martin-StPaul NK; Jaeger C; Rambal S
    Tree Physiol; 2012 Apr; 32(4):464-77. PubMed ID: 22491489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak (Quercus agrifolia) decline in southern California.
    Lynch SC; Eskalen A; Zambino PJ; Mayorquin JS; Wang DH
    Mycologia; 2013; 105(1):125-40. PubMed ID: 23074176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An oak (Quercus agrifolia) specialist (Neotoma macrotis) and a sympatric generalist (Neotoma lepida) show similar intakes and digestibilities of oak.
    Skopec MM; Haley S; Torregrossa AM; Dearing MD
    Physiol Biochem Zool; 2008; 81(4):426-33. PubMed ID: 18544017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Between-tree variations in leaf δ
    Damesin C; Rambal S; Joffre R
    Oecologia; 1997 Jun; 111(1):26-35. PubMed ID: 28307502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.