BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28311900)

  • 1. Structural analysis of the phytophagous insect guilds associated with the roots of Centaurea maculosa Lam. C. diffusa Lam., and C. vallesiaca Jordan in Europe: : I. Field observations.
    Müller H
    Oecologia; 1989 Jan; 78(1):41-52. PubMed ID: 28311900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and growth responses of Centaurea maculosa (Asteraceae) to root herbivory under varying levels of interspecific plant competition and soil nitrogen availability.
    Steinger T; Müller-Schärer H
    Oecologia; 1992 Aug; 91(1):141-149. PubMed ID: 28313386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraspecific and interspecific interactions mediated by a phytotoxin, (-)-catechin, secreted by the roots of Centaurea maculosa (spotted knapweed).
    Weir TL; Bais HP; Vivanco JM
    J Chem Ecol; 2003 Nov; 29(11):2397-412. PubMed ID: 14682522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel weapons and invasion: biogeographic differences in the competitive effects of Centaurea maculosa and its root exudate (+/-)-catechin.
    He WM; Feng Y; Ridenour WM; Thelen GC; Pollock JL; Diaconu A; Callaway RM
    Oecologia; 2009 Apr; 159(4):803-15. PubMed ID: 19219462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weed-biocontrol insects reduce native-plant recruitment through second-order apparent competition.
    Pearson DE; Callaway RM
    Ecol Appl; 2008 Sep; 18(6):1489-500. PubMed ID: 18767624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytotoxic compounds from roots of Centaurea diffusa Lam.
    Quintana N; El Kassis EG; Stermitz FR; Vivanco JM
    Plant Signal Behav; 2009 Jan; 4(1):9-14. PubMed ID: 19568334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insects on plants: explaining the paradox of low diversity within specialist herbivore guilds.
    Novotny V; Miller SE; Hrcek J; Baje L; Basset Y; Lewis OT; Stewart AJ; Weiblen GD
    Am Nat; 2012 Mar; 179(3):351-62. PubMed ID: 22322223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa.
    Treier UA; Broennimann O; Normand S; Guisan A; Schaffner U; Steinger T; Müller-Schärer H
    Ecology; 2009 May; 90(5):1366-77. PubMed ID: 19537556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa.
    Broz AK; Manter DK; Vivanco JM
    ISME J; 2007 Dec; 1(8):763-5. PubMed ID: 18059499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant neighbor identity influences plant biochemistry and physiology related to defense.
    Broz AK; Broeckling CD; De-la-Peña C; Lewis MR; Greene E; Callaway RM; Sumner LW; Vivanco JM
    BMC Plant Biol; 2010 Jun; 10():115. PubMed ID: 20565801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Species-specific effects of polyploidisation and plant traits of Centaurea maculosa and Senecio inaequidens on rhizosphere microorganisms.
    Thébault A; Frey B; Mitchell EA; Buttler A
    Oecologia; 2010 Aug; 163(4):1011-20. PubMed ID: 20229242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of cnicin, a sesquiterpene lactone ofCentaurea maculosa (Asteraceae), on specialist and generalist insect herbivores.
    Landau I; Müller-Schärer H; Ward PI
    J Chem Ecol; 1994 Apr; 20(4):929-42. PubMed ID: 24242206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxalate contributes to the resistance of Gaillardia grandiflora and Lupinus sericeus to a phytotoxin produced by Centaurea maculosa.
    Weir TL; Bais HP; Stull VJ; Callaway RM; Thelen GC; Ridenour WM; Bhamidi S; Stermitz FR; Vivanco JM
    Planta; 2006 Mar; 223(4):785-95. PubMed ID: 16395587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest.
    Novotny V; Miller SE; Baje L; Balagawi S; Basset Y; Cizek L; Craft KJ; Dem F; Drew RA; Hulcr J; Leps J; Lewis OT; Pokon R; Stewart AJ; Samuelson GA; Weiblen GD
    J Anim Ecol; 2010 Nov; 79(6):1193-203. PubMed ID: 20673235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass.
    Ridenour WM; Callaway RM
    Oecologia; 2001 Feb; 126(3):444-450. PubMed ID: 28547460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insect guild structure associated with eastern hemlock in the southern Appalachians.
    Dilling C; Lambdin P; Grant J; Buck L
    Environ Entomol; 2007 Dec; 36(6):1408-14. PubMed ID: 18284768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity and composition of phytophagous insect guilds on Brassicaceae.
    Frenzel M; Brandl R
    Oecologia; 1998 Jan; 113(3):391-399. PubMed ID: 28307824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-dependent phytotoxicity of catechins and other flavonoids: flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots.
    Bais HP; Walker TS; Kennan AJ; Stermitz FR; Vivanco JM
    J Agric Food Chem; 2003 Feb; 51(4):897-901. PubMed ID: 12568546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges.
    He WM; Li JJ; Peng PH
    PLoS One; 2012; 7(1):e31170. PubMed ID: 22303485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do herbivorous insects respond to drought stress in trees?
    Gely C; Laurance SGW; Stork NE
    Biol Rev Camb Philos Soc; 2020 Apr; 95(2):434-448. PubMed ID: 31750622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.