These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 28311921)

  • 1. Feeding Patterns of Tyrophagus putrescentiae (Sarcoptiformes: Acaridae) Indicate That Mycophagy Is Not a Single and Homogeneous Category of Nutritional Biology.
    Smrž J; Soukalová H; Čatská V; Hubert J
    J Insect Sci; 2016; 16(1):. PubMed ID: 27638952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoseiid mites benefited from organic fertilization by increasing the population of Tyrophagus mites in apple orchards.
    Komagata Y; Oe T; Sekine T; Shimmura R; Toyama M; Kishimoto H
    Exp Appl Acarol; 2024 Jul; ():. PubMed ID: 38995469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and metagenomic analyses of the domestic mite Tyrophagus putrescentiae identify it as a widespread environmental contaminant and a host of a basal, mite-specific Wolbachia lineage (supergroup Q).
    Klimov PB; Hubert J; Erban T; Alejandra Perotti M; Braig HR; Flynt A; He Q; Cui Y
    Int J Parasitol; 2024 Jul; ():. PubMed ID: 38992783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competition and Predation in Soil Fungivorous Microarthropods Using Stable Isotope Ratio Mass Spectrometry.
    Crotty FV; Adl SM
    Front Microbiol; 2019; 10():1274. PubMed ID: 31231351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-omic analysis of Tyrophagus putrescentiae reveals insights into the allergen complexity of storage mites.
    Wan AT; Xiong Q; Xiao X; Ao KF; Jang SW; Wong BS; Wang M; Cao Q; Fung CS; Chew FT; Sun B; Ngai SM; Leung TF; Jeong KY; Liu X; Tsui SK
    Clin Exp Allergy; 2024 Jan; 54(1):77-81. PubMed ID: 37984814
    [No Abstract]   [Full Text] [Related]  

  • 6. Efficacy of Liquid Smoke to Mitigate Infestations of the Storage Mite,
    Deliephan A; Phillips TW; Subramanyam B; Aldrich CG; Maille J; Manu N
    Animals (Basel); 2023 Oct; 13(20):. PubMed ID: 37893912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining microfluidics and RNA-sequencing to assess the inducible defensome of a mushroom against nematodes.
    Tayyrov A; Stanley CE; Azevedo S; Künzler M
    BMC Genomics; 2019 Mar; 20(1):243. PubMed ID: 30909884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytoplasmic Lipases-A Novel Class of Fungal Defense Proteins Against Nematodes.
    Tayyrov A; Wei C; Fetz C; Goryachkin A; Schächle P; Nyström L; Künzler M
    Front Fungal Biol; 2021; 2():696972. PubMed ID: 37744157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Food Protective Effects of 3-Methylbenzaldehyde Derived from Myosotis arvensis and Its Analogues against Tyrophagus putrescentiae.
    Park JH; Lee NH; Yang YC; Lee HS
    Sci Rep; 2017 Jul; 7(1):6608. PubMed ID: 28747743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transitional chelal digit patterns in saprophagous astigmatan mites.
    Bowman CE
    Exp Appl Acarol; 2024 May; 92(4):687-737. PubMed ID: 38622432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The indirect influence of potential mates on survival and reproduction of
    Li GY; Lam W; Zhang ZQ
    Bull Entomol Res; 2024 Jun; ():1-7. PubMed ID: 38828673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of bones, mites, soil chemistry, nematodes and soil micro-eukaryotes from a suspected homicide to estimate the post-mortem interval.
    Szelecz I; Lösch S; Seppey CVW; Lara E; Singer D; Sorge F; Tschui J; Perotti MA; Mitchell EAD
    Sci Rep; 2018 Jan; 8(1):25. PubMed ID: 29311698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil-Borne Nematodes: Impact in Agriculture and Livestock and Sustainable Strategies of Prevention and Control with Special Reference to the Use of Nematode Natural Enemies.
    Mendoza-de Gives P
    Pathogens; 2022 Jun; 11(6):. PubMed ID: 35745494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cheliceral chelal design in free-living astigmatid mites.
    Bowman CE
    Exp Appl Acarol; 2021 Jun; 84(2):271-363. PubMed ID: 33988815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Populations of Mites (
    Hubert J; Nesvorna M; Sopko B; Smrz J; Klimov P; Erban T
    Front Microbiol; 2018; 9():2590. PubMed ID: 30425700
    [No Abstract]   [Full Text] [Related]  

  • 16. Development and reproductive potential of Tyrophagus putrescentiae (Acari: Acaridae) on plant-parasitic nematodes and artificial diets.
    Abou El-Atta DA; Osman MA
    Exp Appl Acarol; 2016 Apr; 68(4):477-83. PubMed ID: 26692383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of temperature on the life-history traits of Sancassania (Caloglyphus) berlesei (Acari: Astigmatina: Acaridae) feeding on root-knot nematodes, Meloidogyne spp. (Nematoda: Meloidogynidae).
    Abou El-Atta DA; Ghazy NA; Osman MA
    Exp Appl Acarol; 2014 Nov; 64(3):299-307. PubMed ID: 24923664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consumption of nematodes by fungivorous mites, Tyrophagus spp. (Acarina: Astigmata: Acaridae).
    Walter DE; Hudgens RA; Freckman DW
    Oecologia; 1986 Oct; 70(3):357-361. PubMed ID: 28311921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of linoleic acid in Tyrophagus mites (Acarina: Acaridae).
    Aboshi T; Shimizu N; Nakajima Y; Honda Y; Kuwahara Y; Amano H; Mori N
    Insect Biochem Mol Biol; 2013 Nov; 43(11):991-6. PubMed ID: 23973745
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.