These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 28311942)

  • 1. Estuarine gradients and the growth and development of Agapanthia villosoviridescens, (Coleoptera), a stem-borer of the salt marsh halophyte Aster tripolium.
    Hemminga MA; van Soelen J
    Oecologia; 1988 Nov; 77(3):307-312. PubMed ID: 28311942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The performance of the leaf mining microlepidopteran Bucculatrix maritima (Stt.) on the salt marsh halophyte, Aster tripolium (L.), exposed to different salinity conditions.
    Hemminga MA; van Soelen J
    Oecologia; 1992 Mar; 89(3):422-427. PubMed ID: 28313092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal changes of cadmium and copper levels in stem-boring larvae of Agapanthia villosoviridescens (Coleoptera) on salt marshes of the Westerschelde Estuary.
    Hemminga MA; Nieuwenhuize J; Poley-Vos CH; van Soelen J
    Bull Environ Contam Toxicol; 1989 Nov; 43(5):747-54. PubMed ID: 2804414
    [No Abstract]   [Full Text] [Related]  

  • 4. Monitoring trace metal contamination in salt marshes of the Westerschelde estuary.
    Beeftink WG; Nieuwenhuize J
    Environ Monit Assess; 1986 Nov; 7(3):233-48. PubMed ID: 24253670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium-related partial stomatal closure and salt tolerance of Aster tripolium.
    Kerstiens G; Tych W; Robinson MF; Mansfield TA
    New Phytol; 2002 Mar; 153(3):509-515. PubMed ID: 33863213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt tolerance in Aster tripolium L. I. The effect of salinity on growth.
    Shennan C; Hunt R; Macrobbie EAC
    Plant Cell Environ; 1987 Jan; 10(1):59-65. PubMed ID: 28692162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms mediating plant distributions across estuarine landscapes in a low-latitude tidal estuary.
    Guo H; Pennings SC
    Ecology; 2012 Jan; 93(1):90-100. PubMed ID: 22486090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt tolerance in Aster tripolium L. II. Ionic regulation.
    Shennan C; Hunt R; Macrobbie EAC
    Plant Cell Environ; 1987 Jan; 10(1):67-74. PubMed ID: 28692159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of iron supply during repetitive harvesting of Aster tripolium.
    Ventura Y; Myrzabayeva M; Alikulov Z; Cohen S; Shemer Z; Sagi M
    Funct Plant Biol; 2013 Aug; 40(9):968-976. PubMed ID: 32481165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distribution of an intertidal aphid, Pemphigus trehernei foster, on marine saltmarshes.
    Foster WA; Treherne JE
    Oecologia; 1975 Jun; 21(2):141-155. PubMed ID: 28308245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal).
    Carvalho LM; Caçador I; Martins-Loução M
    Mycorrhiza; 2001 Dec; 11(6):303-9. PubMed ID: 24549351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geographic variation in plant community structure of salt marshes: species, functional and phylogenetic perspectives.
    Guo H; Chamberlain SA; Elhaik E; Jalli I; Lynes AR; Marczak L; Sabath N; Vargas A; Więski K; Zelig EM; Pennings SC
    PLoS One; 2015; 10(5):e0127781. PubMed ID: 26010135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional structure of plant communities along salinity gradients in Iranian salt marshes.
    Matinzadeh Z; López-Angulo J; Escudero A; Palacio S; Abedi M; Akhani H
    Plant Environ Interact; 2022 Feb; 3(1):16-27. PubMed ID: 37283692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of gaseous carbon emissions to low-level salinity increase in tidal marsh ecosystem of the Min River estuary, southeastern China.
    Hu M; Ren H; Ren P; Li J; Wilson BJ; Tong C
    J Environ Sci (China); 2017 Feb; 52():210-222. PubMed ID: 28254041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregative responses of brent geese on salt marsh and their impact on plant community dynamics.
    Rowcliffe JM; Watkinson AR; Sutherland WJ
    Oecologia; 1998 Apr; 114(3):417-426. PubMed ID: 28307786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes.
    Wilde P; Manal A; Stodden M; Sieverding E; Hildebrandt U; Bothe H
    Environ Microbiol; 2009 Jun; 11(6):1548-61. PubMed ID: 19220401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eutrophication and consumer control of new England salt marsh primary productivity.
    Bertness MD; Crain C; Holdredge C; Sala N
    Conserv Biol; 2008 Feb; 22(1):131-9. PubMed ID: 18254858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of Spartina maritima on carbon retention capacity in salt marshes from warm-temperate estuaries.
    Sousa AI; Lillebø AI; Pardal MA; Caçador I
    Mar Pollut Bull; 2010; 61(4-6):215-23. PubMed ID: 20304438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission.
    Scheloske S; Maetz M; Schneider T; Hildebrandt U; Bothe H; Povh B
    Protoplasma; 2004 Jun; 223(2-4):183-9. PubMed ID: 15221523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of salt marsh on bacterial activity in two estuaries with different hydrodynamic characteristics (Ria de Aveiro and Tagus Estuary).
    Santos L; Cunha A; Silva H; Caçador I; Dias JM; Almeida A
    FEMS Microbiol Ecol; 2007 Jun; 60(3):429-41. PubMed ID: 17374125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.