These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 28311942)

  • 21. Hydrocarbon degradation potential of salt marsh plant-microorganisms associations.
    Ribeiro H; Mucha AP; Almeida CM; Bordalo AA
    Biodegradation; 2011 Jul; 22(4):729-39. PubMed ID: 21188477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specificity of Salt Marsh Diazotrophs for Vegetation Zones and Plant Hosts: Results from a North American marsh.
    Lovell CR; Davis DA
    Front Microbiol; 2012; 3():84. PubMed ID: 22438851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L.
    Szymańska S; Płociniczak T; Piotrowska-Seget Z; Złoch M; Ruppel S; Hrynkiewicz K
    Microbiol Res; 2016 Jan; 182():68-79. PubMed ID: 26686615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal contamination: search for an efficient biomarker.
    Duarte B; Santos D; Ca Ador I
    Funct Plant Biol; 2013 Aug; 40(9):922-930. PubMed ID: 32481161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variation in insect herbivory across a salt marsh tidal gradient influences plant survival and distribution.
    Rand TA
    Oecologia; 2002 Aug; 132(4):549-558. PubMed ID: 28547641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mixed strategy in the annual endemic Aster laurentianus (Asteraceae)--a stress-tolerant, yet opportunistic species.
    Houle G; Valéry S
    Am J Bot; 2003 Feb; 90(2):278-83. PubMed ID: 21659119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.
    Lin Q; Mendelssohn IA; Graham SA; Hou A; Fleeger JW; Deis DR
    Sci Total Environ; 2016 Jul; 557-558():369-77. PubMed ID: 27016685
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of marsh design on the abundance of mosquitoes in experimental constructed wetlands in southern California.
    Walton WE; Workman PD
    J Am Mosq Control Assoc; 1998 Mar; 14(1):95-107. PubMed ID: 9599330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.
    Guo H; Zhang Y; Lan Z; Pennings SC
    Glob Chang Biol; 2013 Sep; 19(9):2765-74. PubMed ID: 23580161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.
    Reboreda R; Caçador I
    Environ Pollut; 2007 Mar; 146(1):147-54. PubMed ID: 16996176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of methyl chloroform in a coastal salt marsh of eastern China.
    Wang J; Li R; Guo Y; Qin P; Sun S
    Chemosphere; 2006 Nov; 65(8):1371-80. PubMed ID: 16737728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Tripartite Interaction Between Spartina alterniflora, Fusarium palustre, and the Purple Marsh Crab (Sesarma reticulatum) Contributes to Sudden Vegetation Dieback of Salt Marshes in New England.
    Elmer WH
    Phytopathology; 2014 Oct; 104(10):1070-7. PubMed ID: 24679153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of salinity on different developmental stages of an endemic annual plant, Aster laurentianus (Asteraceae).
    Houle G; Morel L; Reynolds C; Siégel J
    Am J Bot; 2001 Jan; 88(1):62-7. PubMed ID: 11159127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disentangling the photochemical salinity tolerance in Aster tripolium L.: connecting biophysical traits with changes in fatty acid composition.
    Duarte B; Cabrita MT; Gameiro C; Matos AR; Godinho R; Marques JC; Caçador I
    Plant Biol (Stuttg); 2017 Mar; 19(2):239-248. PubMed ID: 27748562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flood tolerance and the distribution of Iva frutescens across New England salt marshes.
    Bertness MD; Wikler K; Chatkupt T
    Oecologia; 1992 Aug; 91(2):171-178. PubMed ID: 28313453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise.
    Beckett LH; Baldwin AH; Kearney MS
    PLoS One; 2016; 11(7):e0159753. PubMed ID: 27467784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dataset of results from numerical simulations of increased storm intensity in an estuarine salt marsh system.
    Pannozzo N; Leonardi N; Carnacina I; Smedley R
    Data Brief; 2021 Oct; 38():107336. PubMed ID: 34504921
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EARLY LIFE-HISTORY OF MELAMPUS AND THE SIGNIFICANCE OF SEMILUNAR SYNCHRONY.
    Russell-Hunter WD; Apley ML; Hunter RD
    Biol Bull; 1972 Dec; 143(3):623-656. PubMed ID: 28368698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes.
    Bertness MD; Ewanchuk PJ
    Oecologia; 2002 Aug; 132(3):392-401. PubMed ID: 28547417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salt tolerance in Aster tripolium L. III. Na and K fluxes in intact seedlings.
    Shennan C
    Plant Cell Environ; 1987 Jan; 10(1):75-81. PubMed ID: 28692154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.