These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 28311942)

  • 41. Self-organization and vegetation collapse in salt marsh ecosystems.
    van de Koppel J; van der Wal D; Bakker JP; Herman PM
    Am Nat; 2005 Jan; 165(1):E1-12. PubMed ID: 15729634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.
    Yang WH; Silver WL
    Glob Chang Biol; 2016 Jun; 22(6):2228-37. PubMed ID: 26718748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India.
    Sengupta A; Chaudhuri S
    Mycorrhiza; 2002 Aug; 12(4):169-74. PubMed ID: 12189470
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Contribution of primary producers to mercury trophic transfer in estuarine ecosystems: possible effects of eutrophication.
    Coelho JP; Pereira ME; Duarte AC; Pardal MA
    Mar Pollut Bull; 2009 Aug; 58(3):358-65. PubMed ID: 19062048
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Consumer control of salt marshes driven by human disturbance.
    Bertness MD; Silliman BR
    Conserv Biol; 2008 Jun; 22(3):618-23. PubMed ID: 18577090
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Is the invasion of the common reed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster?
    Weis JS; Weis P
    Mar Pollut Bull; 2003 Jul; 46(7):816-20. PubMed ID: 12837299
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Host tree species and burn treatment as determinants of preference and suitability for Monochamus scutellatus scutellatus (Coleoptera: Cerambycidae).
    Breton Y; Hébert C; Ibarzabal J; Berthiaume R; Bauce E
    Environ Entomol; 2013 Apr; 42(2):270-6. PubMed ID: 23575017
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Salt marsh as Culex salinarius larval habitat in coastal New York.
    Rochlin I; Dempsey ME; Campbell SR; Ninivaggi DV
    J Am Mosq Control Assoc; 2008 Sep; 24(3):359-67. PubMed ID: 18939687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of succulent halophytes in the water balance of salt marsh rodents.
    Coulombe HN
    Oecologia; 1970 Sep; 4(3):223-247. PubMed ID: 28309833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facilitative and competitive interaction components among New England salt marsh plants.
    Bruno JF; Rand TA; Emery NC; Bertness MD
    PeerJ; 2017; 5():e4049. PubMed ID: 29201563
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Experimental Policies for Water Management in the Everglades.
    Walters C; Gunderson L; Holling CS
    Ecol Appl; 1992 May; 2(2):189-202. PubMed ID: 27759211
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The first host record for Scambus sagax (Hartig, 1838) (Hymenoptera: Ichneumonidae) from Turkey.
    Coruh S; Tozlu G
    Pak J Biol Sci; 2008 Jul; 11(13):1757-8. PubMed ID: 18819634
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects.
    Han P; Wang ZJ; Lavoir AV; Michel T; Seassau A; Zheng WY; Niu CY; Desneux N
    Sci Rep; 2016 Sep; 6():32403. PubMed ID: 27619473
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Increased resistance to a generalist herbivore in a salinity-stressed non-halophytic plant.
    Renault S; Wolfe S; Markham J; Avila-Sakar G
    AoB Plants; 2016; 8():. PubMed ID: 27169610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chenopod salt bladders deter insect herbivores.
    LoPresti EF
    Oecologia; 2014 Mar; 174(3):921-30. PubMed ID: 24241642
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environmental gradients and herbivore feeding preferences in coastal salt marshes.
    Goranson CE; Ho CK; Pennings SC
    Oecologia; 2004 Aug; 140(4):591-600. PubMed ID: 15252727
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Seasonal changes of cadmium and copper levels in stem-boring larvae of Agapanthia villosoviridescens (Coleoptera) on salt marshes of the Westerschelde Estuary.
    Hemminga MA; Nieuwenhuize J; Poley-Vos CH; van Soelen J
    Bull Environ Contam Toxicol; 1989 Nov; 43(5):747-54. PubMed ID: 2804414
    [No Abstract]   [Full Text] [Related]  

  • 58. Estuarine gradients and the growth and development of Agapanthia villosoviridescens, (Coleoptera), a stem-borer of the salt marsh halophyte Aster tripolium.
    Hemminga MA; van Soelen J
    Oecologia; 1988 Nov; 77(3):307-312. PubMed ID: 28311942
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The performance of the leaf mining microlepidopteran Bucculatrix maritima (Stt.) on the salt marsh halophyte, Aster tripolium (L.), exposed to different salinity conditions.
    Hemminga MA; van Soelen J
    Oecologia; 1992 Mar; 89(3):422-427. PubMed ID: 28313092
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.