These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 2831218)
1. Site-directed mutagenesis and continuous expression of human beta-adrenergic receptors. Identification of a conserved aspartate residue involved in agonist binding and receptor activation. Chung FZ; Wang CD; Potter PC; Venter JC; Fraser CM J Biol Chem; 1988 Mar; 263(9):4052-5. PubMed ID: 2831218 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis of human beta-adrenergic receptors: substitution of aspartic acid-130 by asparagine produces a receptor with high-affinity agonist binding that is uncoupled from adenylate cyclase. Fraser CM; Chung FZ; Wang CD; Venter JC Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5478-82. PubMed ID: 2840663 [TBL] [Abstract][Full Text] [Related]
3. A mutation of the beta 2-adrenergic receptor impairs agonist activation of adenylyl cyclase without affecting high affinity agonist binding. Distinct molecular determinants of the receptor are involved in physical coupling to and functional activation of Gs. Hausdorff WP; Hnatowich M; O'Dowd BF; Caron MG; Lefkowitz RJ J Biol Chem; 1990 Jan; 265(3):1388-93. PubMed ID: 2153131 [TBL] [Abstract][Full Text] [Related]
4. Ligand binding to the beta-adrenergic receptor involves its rhodopsin-like core. Dixon RA; Sigal IS; Rands E; Register RB; Candelore MR; Blake AD; Strader CD Nature; 1987 Mar 5-11; 326(6108):73-7. PubMed ID: 2881211 [TBL] [Abstract][Full Text] [Related]
5. Beta 1- and beta 2-adrenergic receptors display subtype-selective coupling to Gs. Green SA; Holt BD; Liggett SB Mol Pharmacol; 1992 May; 41(5):889-93. PubMed ID: 1350321 [TBL] [Abstract][Full Text] [Related]
6. Cytosol activator protein from rat reticulocytes requires the stimulatory guanine nucleotide-binding protein for its actions on adenylate cyclase. Shane E; Yeh M; Feigin AS; Owens JM; Bilezikian JP Endocrinology; 1985 Jul; 117(1):255-63. PubMed ID: 2988918 [TBL] [Abstract][Full Text] [Related]
7. Differential effects of fluoride on adenylate cyclase activity and guanine nucleotide regulation of agonist high-affinity receptor binding. Stadel JM; Crooke ST Biochem J; 1988 Aug; 254(1):15-20. PubMed ID: 2845943 [TBL] [Abstract][Full Text] [Related]
8. A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. Green SA; Cole G; Jacinto M; Innis M; Liggett SB J Biol Chem; 1993 Nov; 268(31):23116-21. PubMed ID: 7901205 [TBL] [Abstract][Full Text] [Related]
9. A truncation mutation in the avian beta-adrenergic receptor causes agonist-induced internalization and GTP-sensitive agonist binding characteristic of mammalian receptors. Hertel C; Nunnally MH; Wong SK; Murphy EA; Ross EM; Perkins JP J Biol Chem; 1990 Oct; 265(29):17988-94. PubMed ID: 1976632 [TBL] [Abstract][Full Text] [Related]
10. Dynamic regulation of leukocyte beta adrenergic receptor-agonist interactions by physiological changes in circulating catecholamines. Feldman RD; Limbird LE; Nadeau J; FitzGerald GA; Robertson D; Wood AJ J Clin Invest; 1983 Jul; 72(1):164-70. PubMed ID: 6308044 [TBL] [Abstract][Full Text] [Related]
11. Effect of ethanol on mouse cerebral cortical beta-adrenergic receptors. Valverius P; Hoffman PL; Tabakoff B Mol Pharmacol; 1987 Aug; 32(1):217-22. PubMed ID: 2886906 [TBL] [Abstract][Full Text] [Related]
12. Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. Strader CD; Sigal IS; Candelore MR; Rands E; Hill WS; Dixon RA J Biol Chem; 1988 Jul; 263(21):10267-71. PubMed ID: 2899076 [TBL] [Abstract][Full Text] [Related]
14. Hippocampal and cerebellar beta-adrenergic receptors and adenylate cyclase are differentially altered by chronic ethanol ingestion. Valverius P; Hoffman PL; Tabakoff B J Neurochem; 1989 Feb; 52(2):492-7. PubMed ID: 2536073 [TBL] [Abstract][Full Text] [Related]
15. Mutations that uncouple the beta-adrenergic receptor from Gs and increase agonist affinity. Strader CD; Dixon RA; Cheung AH; Candelore MR; Blake AD; Sigal IS J Biol Chem; 1987 Dec; 262(34):16439-43. PubMed ID: 2890637 [TBL] [Abstract][Full Text] [Related]
16. Beta-adrenergic receptors in guinea-pig liver plasma membranes and thermal lability of [3H]dihydroalprenolol binding sites. Kawai Y; Graham SM; Yoshioka H; Arinze IJ Biochem Pharmacol; 1986 Dec; 35(24):4387-93. PubMed ID: 3024648 [TBL] [Abstract][Full Text] [Related]
17. Beta-adrenergic signalling in neoplastic lung type 2 cells: glucocorticoid-dependent and -independent defects. Droms KA Br J Cancer; 1996 Aug; 74(3):432-8. PubMed ID: 8695360 [TBL] [Abstract][Full Text] [Related]
18. Translocation and uncoupling of the beta-adrenergic receptor in rat lung after catecholamine promoted desensitization in vivo. Strasser RH; Stiles GL; Lefkowitz RJ Endocrinology; 1984 Oct; 115(4):1392-400. PubMed ID: 6090100 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of beta-adrenergic receptors. Identification of conserved cysteine residues that independently affect ligand binding and receptor activation. Fraser CM J Biol Chem; 1989 Jun; 264(16):9266-70. PubMed ID: 2542304 [TBL] [Abstract][Full Text] [Related]
20. Exfoliation of the beta-adrenergic receptor and the regulatory components of adenylate cyclase by cultured rat glioma C6 cells. Kassis S; Lauter CJ; Stojanov M; Salem N Biochim Biophys Acta; 1986 May; 886(3):474-82. PubMed ID: 2871868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]