BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28312200)

  • 1. Nutrient dynamics within amazonian forests : II. Fine root growth, nutrient availability and leaf litter decomposition.
    Cuevas E; Medina E
    Oecologia; 1988 Jul; 76(2):222-235. PubMed ID: 28312200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutrient dynamics within amazonian forest ecosystems : I. Nutrient flux in fine litter fall and efficiency of nutrient utilization.
    Cuevas E; Medina E
    Oecologia; 1986 Sep; 68(3):466-472. PubMed ID: 28311796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthesis-nitrogen relations in Amazonian tree species : I. Patterns among species and communities.
    Reich PB; Walters MB; Ellsworth DS; Uhl C
    Oecologia; 1994 Feb; 97(1):62-72. PubMed ID: 28313590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro.
    Tiessen H; Chacon P; Cuevas E
    Oecologia; 1994 Sep; 99(1-2):145-150. PubMed ID: 28313960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient cycling in forests.
    Attiwill PM; Adams MA
    New Phytol; 1993 Aug; 124(4):561-582. PubMed ID: 33874438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests.
    Bothwell LD; Selmants PC; Giardina CP; Litton CM
    PeerJ; 2014; 2():e685. PubMed ID: 25493213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed-litter effects of fresh leaf semi-decomposed litter and fine root on soil enzyme activity and microbial community in an evergreen broadleaf karst forest in southwest China.
    Mao B; Cui T; Su T; Xu Q; Lu F; Su H; Zhang J; Xiao S
    Front Plant Sci; 2022; 13():1065807. PubMed ID: 36570900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contrasting dynamics and factor controls in leaf compared with different-diameter fine root litter decomposition in secondary forests in the Qinling Mountains after 5 years of whole-tree harvesting.
    Pang Y; Tian J; Lv X; Wang R; Wang D; Zhang F
    Sci Total Environ; 2022 Sep; 838(Pt 2):156194. PubMed ID: 35618114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Litter removal in a tropical rain forest reduces fine root biomass and production but litter addition has few effects.
    Rodtassana C; Tanner EVJ
    Ecology; 2018 Mar; 99(3):735-742. PubMed ID: 29336482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape.
    Vasconcelos HL; Laurance WF
    Oecologia; 2005 Jul; 144(3):456-62. PubMed ID: 15942762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of root growth on leaf litter decomposition and enzyme activity in litter layer].
    Xu ZJ; Wan XH; Liang YF; Shi XZ
    Ying Yong Sheng Tai Xue Bao; 2021 Jan; 32(1):31-38. PubMed ID: 33477210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.
    Gautam MK; Lee KS; Song BY; Lee D; Bong YS
    J Plant Res; 2016 May; 129(3):463-76. PubMed ID: 26915037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability.
    Ostertag R; Hobbie SE
    Oecologia; 1999 Dec; 121(4):564-573. PubMed ID: 28308366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.
    Purahong W; Kapturska D; Pecyna MJ; Schulz E; Schloter M; Buscot F; Hofrichter M; Krüger D
    PLoS One; 2014; 9(4):e93700. PubMed ID: 24699676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological decomposition efficiency in different woodland soils.
    Herlitzius H
    Oecologia; 1983 Mar; 57(1-2):78-97. PubMed ID: 28310160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Litter mixture effects on tropical tree seedling growth--a greenhouse experiment.
    Coq S; Weigel J; Bonal D; Hättenschwiler S
    Plant Biol (Stuttg); 2012 Jul; 14(4):630-40. PubMed ID: 22289089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine litter input to terrestrial humus forms in Colombian Amazonia.
    Lips JM; Duivenvoorden JF
    Oecologia; 1996 Oct; 108(1):138-150. PubMed ID: 28307744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amazon rain-forest fires.
    Sanford RL; Saldarriaga J; Clark KE; Uhl C; Herrera R
    Science; 1985 Jan; 227(4682):53-5. PubMed ID: 17810023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Litter and nutrient flows in tropical upland forest flooded by a hydropower plant in the Amazonian basin.
    Pereira GHA; Jordão HCK; Silva VFV; Pereira MG
    Sci Total Environ; 2016 Dec; 572():157-168. PubMed ID: 27497033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-Term Simulated Atmospheric Nitrogen Deposition Alters Leaf and Fine Root Decomposition.
    Xia M; Talhelm AF; Pregitzer KS
    Ecosystems; 2018; 21(1):1-14. PubMed ID: 31156332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.