These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28312467)

  • 1. Waterlogging responses in dune, swale and marsh populations of Spartina patens under field conditions.
    Burdick DM; Mendelssohn IA
    Oecologia; 1987 Dec; 74(3):321-329. PubMed ID: 28312467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. THE GENETIC BASIS OF THE ECOLOGICAL AMPLITUDE OF SPARTINA PATENS. II. VARIANCE AND CORRELATION ANALYSIS.
    Silander JA
    Evolution; 1985 Sep; 39(5):1034-1052. PubMed ID: 28561514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lacunal allocation and gas transport capacity in the salt marsh grass Spartina alterniflora.
    Arenovski AL; Howes BL
    Oecologia; 1992 Jun; 90(3):316-322. PubMed ID: 28313517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsurface aeration of tidal wetland soils: Root-system structure and aerenchyma connectivity in Spartina (Poaceae).
    Granse D; Titschack J; Ainouche M; Jensen K; Koop-Jakobsen K
    Sci Total Environ; 2022 Jan; 802():149771. PubMed ID: 34525732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species].
    Wang GB; Cao FL; Zhang XY; Zhang WX
    Ying Yong Sheng Tai Xue Bao; 2010 Mar; 21(3):590-6. PubMed ID: 20560312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and de novo transcriptome analysis of the fermentation mechanism of Cerasus sachalinensis roots in response to short-term waterlogging.
    Zhang P; Lyu D; Jia L; He J; Qin S
    BMC Genomics; 2017 Aug; 18(1):649. PubMed ID: 28830345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microevolution and Clone Structure in Spartina patens.
    Silander JA
    Science; 1979 Feb; 203(4381):658-60. PubMed ID: 17813380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenomic networks reveal largely independent root and shoot adjustment in waterlogged plants of Lotus japonicus.
    Striker GG; Casas C; Manzur ME; Ploschuk RA; Casal JJ
    Plant Cell Environ; 2014 Oct; 37(10):2278-93. PubMed ID: 24393069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics.
    Rubio G; Oesterheld M; Alvarez CR; Lavado RS
    Oecologia; 1997 Oct; 112(2):150-155. PubMed ID: 28307564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between morphological and physiological responses to waterlogging and salinity in Sporobolus virginicus (L.) Kunth.
    Naidoo G; Mundree SG
    Oecologia; 1993 Mar; 93(3):360-366. PubMed ID: 28313436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of antioxidative and ethanolic fermentation enzymes in maize seedlings of tolerant and sensitive genotypes under short-term waterlogging.
    Chugh V; Gupta AK; Grewal MS; Kaur N
    Indian J Exp Biol; 2012 Aug; 50(8):577-82. PubMed ID: 23016495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Waterlogging-induced changes in root architecture of germplasm accessions of the tropical forage grass Brachiaria humidicola.
    Cardoso JA; Jiménez Jde L; Rao IM
    AoB Plants; 2014 Apr; 6():. PubMed ID: 24876299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of flooding with carbon metabolism of forest trees.
    Kreuzwieser J; Papadopoulou E; Rennenberg H
    Plant Biol (Stuttg); 2004 May; 6(3):299-306. PubMed ID: 15143438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in root aeration, iron plaque formation and waterlogging tolerance in six mangroves along a continues tidal gradient.
    Cheng H; Wang YS; Fei J; Jiang ZY; Ye ZH
    Ecotoxicology; 2015 Oct; 24(7-8):1659-67. PubMed ID: 25956983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation.
    Visser EJW; Bögemann GM; VAN DE Steeg HM; Pierik R; Blom CWPM
    New Phytol; 2000 Oct; 148(1):93-103. PubMed ID: 33863031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coping with low nutrient availability and inundation: root growth responses of three halophytic grass species from different elevations along a flooding gradient.
    Bouma TJ; Koutstaal BP; van Dongen M; Nielsen KL
    Oecologia; 2001 Feb; 126(4):472-481. PubMed ID: 28547231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).
    Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M
    Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential growth of Spartina densiflora populations under saline flooding is related to adventitious root formation and innate root ion regulation.
    Di Bella CE; Grimoldi AA; Rossi Lopardo MS; Escaray FJ; Ploschuk EL; Striker GG
    Funct Plant Biol; 2015 Feb; 43(1):52-61. PubMed ID: 32480441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of radial oxygen loss in mangroves subjected to waterlogging.
    Cheng H; Wu ML; Li CD; Sun FL; Sun CC; Wang YS
    Ecotoxicology; 2020 Aug; 29(6):684-690. PubMed ID: 32394359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum 'Park'.
    Aschi-Smiti S; Chaibi W; Brouquisse R; Ricard B; Saglio P
    Ann Bot; 2003 Jan; 91 Spec No(2):195-204. PubMed ID: 12509340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.