These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 28312467)

  • 21. Assessment of enzyme induction and aerenchyma formation as mechanisms for flooding tolerance in Trifolium subterraneum 'Park'.
    Aschi-Smiti S; Chaibi W; Brouquisse R; Ricard B; Saglio P
    Ann Bot; 2003 Jan; 91 Spec No(2):195-204. PubMed ID: 12509340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide association study reveals quantitative trait loci for waterlogging-triggered adventitious roots and aerenchyma formation in common wheat.
    Xu L; Zhao C; Pang J; Niu Y; Liu H; Zhang W; Zhou M
    Front Plant Sci; 2022; 13():1066752. PubMed ID: 36507408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Water relations of an invasive halophyte (Spartina patens): osmoregulation and ionic effects on xylem hydraulics.
    Casolo V; Tomasella M; De Col V; Braidot E; Savi T; Nardini A
    Funct Plant Biol; 2015 Mar; 42(3):264-273. PubMed ID: 32480672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants.
    Teoh EY; Teo CH; Baharum NA; Pua TL; Tan BC
    Plants (Basel); 2022 Aug; 11(15):. PubMed ID: 35956531
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of waterlogging tolerance in wheat--a review of root and shoot physiology.
    Herzog M; Striker GG; Colmer TD; Pedersen O
    Plant Cell Environ; 2016 May; 39(5):1068-86. PubMed ID: 26565998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alcohol dehydrogenase activity in the roots of marsh plants in naturally waterlogged soils.
    Smith AM; Hylton CM; Koch L; Woolhouse HW
    Planta; 1986 May; 168(1):130-8. PubMed ID: 24233745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Opportunities for Improving Waterlogging Tolerance in Cereal Crops-Physiological Traits and Genetic Mechanisms.
    Tong C; Hill CB; Zhou G; Zhang XQ; Jia Y; Li C
    Plants (Basel); 2021 Jul; 10(8):. PubMed ID: 34451605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of soil drought and partial waterlogging on water relations of Gmelina arborea seedlings.
    Osonubi O; Fasehun FE; Fasidi IO
    Oecologia; 1985 Apr; 66(1):126-131. PubMed ID: 28310824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Waterlogging responses of Sporobolus virginicus (L.) Kunth.
    Naidoo G; Naidoo S
    Oecologia; 1992 Jun; 90(3):445-450. PubMed ID: 28313534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance.
    Howes BL; Teal JM
    Oecologia; 1994 May; 97(4):431-438. PubMed ID: 28313730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean.
    Thomas AL; Guerreiro SM; Sodek L
    Ann Bot; 2005 Dec; 96(7):1191-8. PubMed ID: 16199486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.).
    Christianson JA; Llewellyn DJ; Dennis ES; Wilson IW
    Plant Cell Physiol; 2010 Jan; 51(1):21-37. PubMed ID: 19923201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water relations and growth responses of Uniola paniculata (sea oats) to soil moisture and water-table depth.
    Hester MW; Mendelssohn IA
    Oecologia; 1989 Mar; 78(3):289-296. PubMed ID: 28312572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial carbon monoxide consumption in salt marsh sediments.
    King GM
    FEMS Microbiol Ecol; 2007 Jan; 59(1):2-9. PubMed ID: 17059484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Waterlogging Priming Enhances Hypoxia Stress Tolerance of Wheat Offspring Plants by Regulating Root Phenotypic and Physiological Adaption.
    Feng K; Wang X; Zhou Q; Dai T; Cao W; Jiang D; Cai J
    Plants (Basel); 2022 Jul; 11(15):. PubMed ID: 35956447
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physiological adaptation of crop plants to flooding stress.
    Liao CT; Lin CH
    Proc Natl Sci Counc Repub China B; 2001 Jul; 25(3):148-57. PubMed ID: 11480770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of antioxidant and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against waterlogging.
    Chugh V; Kaur N; Gupta AK
    Indian J Biochem Biophys; 2011 Oct; 48(5):346-52. PubMed ID: 22165294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of herbivory on neighbor interactions along a coastal marsh gradient.
    Taylor K; Grace J; Marx B
    Am J Bot; 1997 May; 84(5):709. PubMed ID: 21708623
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early physiological flood tolerance is followed by slow post-flooding root recovery in the dryland riparian tree Eucalyptus camaldulensis subsp. refulgens.
    Argus RE; Colmer TD; Grierson PF
    Plant Cell Environ; 2015 Jun; 38(6):1189-99. PubMed ID: 25328049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different Waterlogging Depths Affect Spatial Distribution of Fine Root Growth for
    Fujita S; Noguchi K; Tange T
    Front Plant Sci; 2021; 12():614764. PubMed ID: 33777063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.