These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 28312509)

  • 1. An analysis of climate and competition as contributors to decline of red spruce in high elevation Appalachian forests of the Eastern United states.
    McLaughlin SB; Downing DJ; Blasing TJ; Cook ER; Adams HS
    Oecologia; 1987 Jul; 72(4):487-501. PubMed ID: 28312509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forest decline: modeling the effect of climate in tree rings.
    Cook ER; Johnson AH; Blasing TJ
    Tree Physiol; 1987 Mar; 3(1):27-40. PubMed ID: 14975833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disturbance and climatic effects on red spruce community dynamics at its southern continuous range margin.
    Ribbons RR
    PeerJ; 2014; 2():e293. PubMed ID: 24688869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The surprising recovery of red spruce growth shows links to decreased acid deposition and elevated temperature.
    Kosiba AM; Schaberg PG; Rayback SA; Hawley GJ
    Sci Total Environ; 2018 Oct; 637-638():1480-1491. PubMed ID: 29801241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tree demography suggests multiple directions and drivers for species range shifts in mountains of Northeastern United States.
    Wason JW; Dovciak M
    Glob Chang Biol; 2017 Aug; 23(8):3335-3347. PubMed ID: 27935175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC.
    Eastaugh CS; Pötzelsberger E; Hasenauer H
    Tree Physiol; 2011 Mar; 31(3):262-74. PubMed ID: 21512099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-exome sequencing reveals a long-term decline in effective population size of red spruce (
    Capblancq T; Butnor JR; Deyoung S; Thibault E; Munson H; Nelson DM; Fitzpatrick MC; Keller SR
    Evol Appl; 2020 Oct; 13(9):2190-2205. PubMed ID: 33005218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Old-growth red spruce forests as reservoirs of genetic diversity and reproductive fitness.
    Mosseler A; Major JE; Rajora OP
    Theor Appl Genet; 2003 Mar; 106(5):931-7. PubMed ID: 12647069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Competition, Drought Stress and Photosynthetic Productivity on the Radial Growth of White Spruce in Western Canada.
    Alam SA; Huang JG; Stadt KJ; Comeau PG; Dawson A; Gea-Izquierdo G; Aakala T; Hölttä T; Vesala T; Mäkelä A; Berninger F
    Front Plant Sci; 2017; 8():1915. PubMed ID: 29163627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taxonomy, together with ontogeny and growing conditions, drives needleleaf species' sensitivity to climate in boreal North America.
    Marchand W; Girardin MP; Hartmann H; Gauthier S; Bergeron Y
    Glob Chang Biol; 2019 Aug; 25(8):2793-2809. PubMed ID: 31012507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests.
    Walker XJ; Mack MC; Johnstone JF
    Glob Chang Biol; 2015 Aug; 21(8):3102-13. PubMed ID: 25683740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aluminum-induced calcium deficiency syndrome in declining red spruce.
    Shortle WC; Smith KT
    Science; 1988 May; 240(4855):1017-8. PubMed ID: 17731713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal changes in shoot water relations of Picea rubens at two high elevation sites in the Smoky Mountains.
    Andersen CP; McLaughlin SB
    Tree Physiol; 1991 Jan; 8(1):11-21. PubMed ID: 14972893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Warming-Induced Decline of Picea crassifolia Growth in the Qilian Mountains in Recent Decades.
    Yu L; Huang L; Shao X; Xiao F; Wilmking M; Zhang Y
    PLoS One; 2015; 10(6):e0129959. PubMed ID: 26121479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic signatures of natural selection in response to air pollution in red spruce (Picea rubens, Pinaceae).
    Bashalkhanov S; Eckert AJ; Rajora OP
    Mol Ecol; 2013 Dec; 22(23):5877-89. PubMed ID: 24118331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate and red spruce growth and decline in the northern Appalachians.
    Johnson AH; Cook ER; Siccama TG
    Proc Natl Acad Sci U S A; 1988 Aug; 85(15):5369-73. PubMed ID: 16593962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial patterns in forest composition and standing dead red spruce in montane forests of the Adirondacks and northern Appalachians.
    Craig BW; Friedland AJ
    Environ Monit Assess; 1991 Aug; 18(2):129-43. PubMed ID: 24233751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal changes in antioxidants in red spruce (Picea rubens Sarg.) from three field sites in the northeastern United States.
    Madamanchi NR; Hausladen A; Alscher RG; Amundson RG; Fellows S
    New Phytol; 1991 Jun; 118(2):331-338. PubMed ID: 33874180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice.
    Girardin MP; Guo XJ; De Jong R; Kinnard C; Bernier P; Raulier F
    Glob Chang Biol; 2014 Mar; 20(3):851-66. PubMed ID: 24115302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest.
    Bond-Lamberty B; Rocha AV; Calvin K; Holmes B; Wang C; Goulden ML
    Glob Chang Biol; 2014 Jan; 20(1):216-27. PubMed ID: 24115380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.