These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28312650)

  • 1. Distribution of carbonic anhydrase in British marine macroalgae.
    Giordano M; Maberly SC
    Oecologia; 1989 Dec; 81(4):534-539. PubMed ID: 28312650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of external carbonic anhydrase in light-dependent alkalization by Fucus serratus L. and Laminaria saccharina (L.) Lamour. (Phaeophyta).
    Haglund K; Ramazanov Z; Mtolera M; Pedersén M
    Planta; 1992 Aug; 188(1):1-6. PubMed ID: 24178192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The acquisition of inorganic carbon by four red macroalgae.
    Johnston AM; Maberly SC; Raven JA
    Oecologia; 1992 Dec; 92(3):317-326. PubMed ID: 28312597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonic anhydrase in marine algae.
    Bowes GW
    Plant Physiol; 1969 May; 44(5):726-32. PubMed ID: 4977463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination between
    Maberly SC; Raven JA; Johnston AM
    Oecologia; 1992 Oct; 91(4):481-492. PubMed ID: 28313499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta).
    Zhou W; Sui Z; Wang J; Hu Y; Kang KH; Hong HR; Niaz Z; Wei H; Du Q; Peng C; Mi P; Que Z
    Photosynth Res; 2016 Jun; 128(3):259-70. PubMed ID: 26960545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthesis might be limited by light, not inorganic carbon availability, in three intertidal Gelidiales species.
    Mercado JM; Xavier Niell F; Candelaria Gil-Rodríguez M
    New Phytol; 2001 Mar; 149(3):431-439. PubMed ID: 33873336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications.
    Surif MB; Raven JA
    Oecologia; 1989 Jan; 78(1):97-105. PubMed ID: 28311907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal and spatial variability in rates of primary production and detritus release by intertidal stands of
    Gilson AR; White LJ; Burrows MT; Smale DA; O'Connor NE
    Ecol Evol; 2023 Jun; 13(6):e10146. PubMed ID: 37351476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorophyta and Rhodophyta macroalgae: a source of health promoting phytochemicals.
    Santos SA; Vilela C; Freire CS; Abreu MH; Rocha SM; Silvestre AJ
    Food Chem; 2015 Sep; 183():122-8. PubMed ID: 25863619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The response of nutrient assimilation and biochemical composition of Arctic seaweeds to a nutrient input in summer.
    Gordillo FJ; Aguilera J; Jiménez C
    J Exp Bot; 2006; 57(11):2661-71. PubMed ID: 16829547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of carbonic anhydrase in photosynthesis of Skeletonema costatum.
    Chen XW; Gao KS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Oct; 30(5):511-6. PubMed ID: 15627704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous Measurements of the Free Dissolved CO(2) Concentration during Photosynthesis of Marine Plants: Evidence for HCO(3) Use in Chondrus crispus.
    Brechignac F; Andre M
    Plant Physiol; 1985 Jul; 78(3):551-4. PubMed ID: 16664281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Model for HCO(3) Accumulation and Photosynthesis in the Cyanobacterium Synechococcus sp: Theoretical Predictions and Experimental Observations.
    Badger MR; Bassett M; Comins HN
    Plant Physiol; 1985 Feb; 77(2):465-71. PubMed ID: 16664076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative methods of photosynthetic carbon assimilation in marine macroalgae.
    Reiskind JB; Seamon PT; Bowes G
    Plant Physiol; 1988 Jul; 87(3):686-92. PubMed ID: 16666208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecophysiology of photosynthesis in macroalgae.
    Raven JA; Hurd CL
    Photosynth Res; 2012 Sep; 113(1-3):105-25. PubMed ID: 22843100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbonic Anhydrase-Dependent Inorganic Carbon Uptake by the Red Macroalga, Chondrus crispus.
    Smith RG; Bidwell RG
    Plant Physiol; 1987 Apr; 83(4):735-8. PubMed ID: 16665329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marine algal flora of Flores and Corvo Islands, Azores.
    Neto AIA; Parente MI; Tittley I; Fletcher RL; Farnham W; Costa AC; Botelho AZ; Monteiro S; Resendes R; Afonso P; Prestes ACL; Álvaro NV; Mila-Figueras D; Neto RMA; Azevedo JMN; Moreu I
    Biodivers Data J; 2021; 9():e60929. PubMed ID: 33584114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial activity of some macroalgae of the Veracruzano Reef System (SAV), Mexico.
    Avila-Romero M; María García-Bores A; Garduño-Solorzano G; Guillermo Avila-Acevedo J; Serrano-Parrales R; Orozco-Martínez J; Meraz-Martínez S; Peñalosa-Castro I; Antonio Estrella-Parra E; Valencia-Quiroz I; Hernandez-Delgado T
    Saudi J Biol Sci; 2023 Jan; 30(1):103496. PubMed ID: 36419924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocean acidification alleviates low-temperature effects on growth and photosynthesis of the red alga Neosiphonia harveyi (Rhodophyta).
    Olischläger M; Wiencke C
    J Exp Bot; 2013 Dec; 64(18):5587-97. PubMed ID: 24127518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.