These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 28312704)
61. Carbon dioxide exchange characteristics of C Pearcy RW; Osteryoung K; Randall D Oecologia; 1982 Dec; 55(3):333-341. PubMed ID: 28309974 [TBL] [Abstract][Full Text] [Related]
62. Water content effects on photosynthetic response of Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Murray KJ; Harley PC; Beyers J; Walz H; Tenhunen JD Oecologia; 1989 May; 79(2):244-250. PubMed ID: 28312861 [TBL] [Abstract][Full Text] [Related]
63. Carbon-dioxide exchange in lichens: determination of transport and carboxylation characteristics. Cowan IR; Lange OL; Green TG Planta; 1992 May; 187(2):282-94. PubMed ID: 24178057 [TBL] [Abstract][Full Text] [Related]
64. Environmental stress and Umbilicaria lichens: The effect of subzero temperature pretreatments. Larson DW Oecologia; 1982 Nov; 55(2):268-278. PubMed ID: 28311245 [TBL] [Abstract][Full Text] [Related]
65. Potential survival of the lichen Caloplaca flavovirescens under high helium-beam doses. Miki K; Kawashima S; Takahashi Y; Yonemura S Radiat Environ Biophys; 2019 Aug; 58(3):449-454. PubMed ID: 31222610 [TBL] [Abstract][Full Text] [Related]
66. Dew and fog as possible evolutionary drivers? The expansion of crustose and fruticose lichens in the Negev is respectively mainly dictated by dew and fog. Kidron GJ; Kronenfeld R Planta; 2022 Jan; 255(2):32. PubMed ID: 34988709 [TBL] [Abstract][Full Text] [Related]
67. The effects of temperature and moisture on CO Harrisson PM; Walton DWH; Rothery P New Phytol; 1989 Apr; 111(4):673-682. PubMed ID: 33874065 [TBL] [Abstract][Full Text] [Related]
68. [CO2-gas exchange of mosses following water vapour uptake]. Lange OL Planta; 1969 Mar; 89(1):90-4. PubMed ID: 24504355 [TBL] [Abstract][Full Text] [Related]
69. A simple carbon dioxide injection system for photosynthetic studies. Oliver DJ; Cameron SI; Schaedle M Plant Physiol; 1974 Oct; 54(4):649-51. PubMed ID: 16658944 [TBL] [Abstract][Full Text] [Related]
70. A new critical starting point for Antarctic lichen taxonomy. Søchting U New Phytol; 2002 Jun; 154(3):550-551. PubMed ID: 33873443 [No Abstract] [Full Text] [Related]
71. The Porometer Method for the Continuous Estimation of Dimensions of Stomates. Wilson CC Plant Physiol; 1947 Oct; 22(4):582-9. PubMed ID: 16654125 [No Abstract] [Full Text] [Related]
72. In situ photosynthetic differentiation of the green algal and the cyanobacterial photobiont in the crustose lichen Placopsis contortuplicata. Schroeter B Oecologia; 1994 Jul; 98(2):212-220. PubMed ID: 28313979 [TBL] [Abstract][Full Text] [Related]
73. High thallus water content severely limits photosynthetic carbon gain of central European epilithic lichens under natural conditions. Lange OL; Green TG Oecologia; 1996 Oct; 108(1):13-20. PubMed ID: 28307728 [TBL] [Abstract][Full Text] [Related]
74. Temperate rainforest lichens in New Zealand: high thallus water content can severely limit photosynthetic CO Lange OL; Büdel B; Heber U; Meyer A; Zellner H; Green TG Oecologia; 1993 Sep; 95(3):303-313. PubMed ID: 28314003 [TBL] [Abstract][Full Text] [Related]
75. A portable steady-state porometer for measuring the carbon dioxide and water vapour exchanges of leaves under natural conditions. Schulze E-; Hall AE; Lange OL; Walz H Oecologia; 1982 Jan; 53(2):141-145. PubMed ID: 28311102 [TBL] [Abstract][Full Text] [Related]
76. Carbon dioxide exchange of Antarctic crustose lichens in situ measured with a CO Kappen L; Schroeter B; Sancho LG Oecologia; 1990 Mar; 82(3):311-316. PubMed ID: 28312704 [TBL] [Abstract][Full Text] [Related]
77. Monitoring photosynthetic activity of crustose lichens using a PAM-2000 fluorescence system. Schroeter B; Green TG; Seppelt RD; Kappen L Oecologia; 1992 Dec; 92(4):457-462. PubMed ID: 28313215 [TBL] [Abstract][Full Text] [Related]