These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 28312709)

  • 1. A comparison of phosphorus and nitrogen transfer between plants of different phosphorus status.
    Eissenstat DM
    Oecologia; 1990 Mar; 82(3):342-347. PubMed ID: 28312709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Phosphorus transfer between mixed poplar and black locust seedlings].
    He W; Jia L; Hao B; Wen X; Zhai M
    Ying Yong Sheng Tai Xue Bao; 2003 Apr; 14(4):481-6. PubMed ID: 12920885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?
    Teste FP; Veneklaas EJ; Dixon KW; Lambers H
    Plant Cell Environ; 2015 Jan; 38(1):50-60. PubMed ID: 24811370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil.
    García I; Mendoza R
    Plant Biol (Stuttg); 2012 Nov; 14(6):964-71. PubMed ID: 22512871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VESICULAR-ARBUSCULAR MYCORRHIZA IN NATURAL VEGETATION SYSTEMS: IV. TRANSFER OF NUTRIENTS IN INTER- AND INTRA-SPECIFIC COMBINATIONS OF HOST PLANTS.
    Francis R; Finlay RD; Read DJ
    New Phytol; 1986 Jan; 102(1):103-111. PubMed ID: 33873890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EVIDENCE ON THE PATHWAYS OF PHOSPHORUS TRANSFER BETWEEN VESICULAR - ARBUSCULAR MYCORRHIZAL PLANTS.
    Newman EI; Ritz K
    New Phytol; 1986 Sep; 104(1):77-87. PubMed ID: 33873811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient transport between ryegrass plants differeing in nutrient status.
    Ritz K; Newman EI
    Oecologia; 1986 Aug; 70(1):128-131. PubMed ID: 28311297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil.
    Karasawa T; Hodge A; Fitter AH
    Plant Cell Environ; 2012 Apr; 35(4):819-28. PubMed ID: 22070553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of mineral nitrogen limitation, competition, arbuscular mycorrhiza, and their respective interactions, on morphological and chemical plant traits of Plantago lanceolata.
    Pankoke H; Höpfner I; Matuszak A; Beyschlag W; Müller C
    Phytochemistry; 2015 Oct; 118():149-61. PubMed ID: 26296746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive regulation of grass yield and chemical properties by defoliation, a salivary chemical, and inorganic nutrition.
    McNaughton SJ
    Oecologia; 1985 Mar; 65(4):478-486. PubMed ID: 28311853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales.
    Smith SE; Smith FA
    Annu Rev Plant Biol; 2011; 62():227-50. PubMed ID: 21391813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-nutrient vs. nitrogen-only effects on carbon sequestration in grassland soils.
    Fornara DA; Banin L; Crawley MJ
    Glob Chang Biol; 2013 Dec; 19(12):3848-57. PubMed ID: 23907927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L.
    Orłowska E; Godzik B; Turnau K
    Environ Pollut; 2012 Sep; 168():121-30. PubMed ID: 22609863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest.
    Camenzind T; Hempel S; Homeier J; Horn S; Velescu A; Wilcke W; Rillig MC
    Glob Chang Biol; 2014 Dec; 20(12):3646-59. PubMed ID: 24764217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matrix based fertilizers reduce nitrogen and phosphorus leaching in three soils.
    Entry JA; Sojka RE
    J Environ Manage; 2008 May; 87(3):364-72. PubMed ID: 17597286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moderating mycorrhizas: arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries.
    Nazeri NK; Lambers H; Tibbett M; Ryan MH
    Plant Cell Environ; 2014 Apr; 37(4):911-21. PubMed ID: 24112081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foraging for nutrients, responses to changes in light, and competition in tropical deciduous tree seedlings.
    Huante P; Rincón E; Chapin Iii FS
    Oecologia; 1998 Nov; 117(1-2):209-216. PubMed ID: 28308489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil.
    Zhu YG; Smith FA; Smith SE
    Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability.
    Torres Aquino M; Plassard C
    FEMS Microbiol Ecol; 2004 May; 48(2):149-56. PubMed ID: 19712398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions.
    Isaac ME; Hinsinger P; Harmand JM
    Sci Total Environ; 2012 Sep; 434():71-8. PubMed ID: 22446108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.