These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 28312723)

  • 1. Chiral escape of bark beetles from predators responding to a bark beetle pheromone.
    Raffa KF; Klepzig KD
    Oecologia; 1990 Mar; 82(3):430. PubMed ID: 28312723
    [No Abstract]   [Full Text] [Related]  

  • 2. Chiral escape of bark beetles from predators responding to a bark beetle pheromone.
    Raffa KF; Klepzig KD
    Oecologia; 1989 Sep; 80(4):566-569. PubMed ID: 28312845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pheromone production in bark beetles.
    Blomquist GJ; Figueroa-Teran R; Aw M; Song M; Gorzalski A; Abbott NL; Chang E; Tittiger C
    Insect Biochem Mol Biol; 2010 Oct; 40(10):699-712. PubMed ID: 20727970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress.
    Grodzki W; McManus M; Knízek M; Meshkova V; Mihalciuc V; Novotny J; Turcani M; Slobodyan Y
    Environ Pollut; 2004 Jul; 130(1):73-83. PubMed ID: 15046842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pheromone frontalin and its dual function in the invasive bark beetle Dendroctonus valens.
    Liu Z; Xu B; Miao Z; Sun J
    Chem Senses; 2013 Jul; 38(6):485-95. PubMed ID: 23629623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry.
    Popa V; Déziel E; Lavallée R; Bauce E; Guertin C
    Pest Manag Sci; 2012 Jul; 68(7):963-75. PubMed ID: 22566204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity and redundancy in the olfactory system of the bark beetle Ips typographus: single-cell responses to ecologically relevant odors.
    Andersson MN; Larsson MC; Schlyter F
    J Insect Physiol; 2009 Jun; 55(6):556-67. PubMed ID: 19233334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saproxylic community, guild and species responses to varying pheromone components of a pine bark beetle.
    Etxebeste I; Lencina JL; Pajares J
    Bull Entomol Res; 2013 Oct; 103(5):497-510. PubMed ID: 23448256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using acoustic technology to reduce bark beetle reproduction.
    Hofstetter RW; Dunn DD; McGuire R; Potter KA
    Pest Manag Sci; 2014 Jan; 70(1):24-7. PubMed ID: 24105962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mode of pheromone evolution: evidence from bark beetles.
    Symonds MR; Elgar MA
    Proc Biol Sci; 2004 Apr; 271(1541):839-46. PubMed ID: 15255103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm.
    Six DL; Wingfield MJ
    Annu Rev Entomol; 2011; 56():255-72. PubMed ID: 20822444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of bark beetle infestation on secondary organic aerosol precursor emissions.
    Amin H; Atkins PT; Russo RS; Brown AW; Sive B; Hallar AG; Huff Hartz KE
    Environ Sci Technol; 2012 Jun; 46(11):5696-703. PubMed ID: 22545866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of aggregation pheromone in trapping red palm weevil (Rhynchophorus ferrugineus Olivier) and rhinoceros beetle (Oryctes rhinoceros Linn.) from infested coconut palms.
    Chakravarthy AK; Chandrashekharaiah M; Kandakoor SB; Nagaraj DN
    J Environ Biol; 2014 May; 35(3):479-84. PubMed ID: 24813002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing bark beetle outbreaks after forest fires on the Iberian Peninsula.
    Lombardero MJ; Ayres MP
    Environ Entomol; 2011 Oct; 40(5):1007-18. PubMed ID: 22251713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predation and bark beetle dynamics.
    Reeve JD
    Oecologia; 1997 Sep; 112(1):48-54. PubMed ID: 28307375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain.
    Romón P; Zhou X; Iturrondobeitia JC; Wingfield MJ; Goldarazena A
    Can J Microbiol; 2007 Jun; 53(6):756-67. PubMed ID: 17668036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large carbon release legacy from bark beetle outbreaks across Western United States.
    Ghimire B; Williams CA; Collatz GJ; Vanderhoof M; Rogan J; Kulakowski D; Masek JG
    Glob Chang Biol; 2015 Aug; 21(8):3087-101. PubMed ID: 25826244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytosanitation Methods Influence Posttreatment Colonization of Juglans nigra Logs by Pityophthorus juglandis (Coleoptera: Curculionidae: Scolytinae).
    Audley J; Mayfield AE; Myers SW; Taylor A; Klingeman WE
    J Econ Entomol; 2016 Feb; 109(1):213-21. PubMed ID: 26318005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripheral modulation of pheromone response by inhibitory host compound in a beetle.
    Andersson MN; Larsson MC; Blazenec M; Jakus R; Zhang QH; Schlyter F
    J Exp Biol; 2010 Oct; 213(Pt 19):3332-9. PubMed ID: 20833926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colonization of Artificially Stressed Black Walnut Trees by Ambrosia Beetle, Bark Beetle, and Other Weevil Species (Coleoptera: Curculionidae) in Indiana and Missouri.
    Reed SE; Juzwik J; English JT; Ginzel MD
    Environ Entomol; 2015 Dec; 44(6):1455-64. PubMed ID: 26314028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.