These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 28312726)

  • 1. Manipulation of food resources by a gall-forming aphid: the physiology of sink-source interactions.
    Larson KC; Whitham TG
    Oecologia; 1991 Sep; 88(1):15-21. PubMed ID: 28312726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetic basis for the manipulation of sink-source relationships by the galling aphid Pemphigus batae.
    Compson ZG; Larson KC; Zinkgraf MS; Whitham TG
    Oecologia; 2011 Nov; 167(3):711-21. PubMed ID: 21667296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between gall aphids and natural plant sinks: plant architecture affects resistance to galling.
    Larson KC; Whitham TG
    Oecologia; 1997 Feb; 109(4):575-582. PubMed ID: 28307342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphometric analysis of young petiole galls on the narrow-leaf cottonwood, Populus angustifolia, by the sugarbeet root aphid, Pemphigus betae.
    Richardson RA; Body M; Warmund MR; Schultz JC; Appel HM
    Protoplasma; 2017 Jan; 254(1):203-216. PubMed ID: 26739691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of two gall-forming arthropods on the photosynthetic rates of their hosts.
    Larson KC
    Oecologia; 1998 Jun; 115(1-2):161-166. PubMed ID: 28308447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heritable Phytohormone Profiles of Poplar Genotypes Vary in Resistance to a Galling Aphid.
    Body MJA; Zinkgraf MS; Whitham TG; Lin CH; Richardson RA; Appel HM; Schultz JC
    Mol Plant Microbe Interact; 2019 Jun; 32(6):654-672. PubMed ID: 30520677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in clonal poplar leaf chemistry caused by stem galls alter herbivory and leaf litter decomposition.
    Künkler N; Brandl R; Brändle M
    PLoS One; 2013; 8(11):e79994. PubMed ID: 24260333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a mechanistic understanding of competition in vascular-feeding herbivores: an empirical test of the sink competition hypothesis.
    Kaplan I; Sardanelli S; Rehill BJ; Denno RF
    Oecologia; 2011 Jul; 166(3):627-36. PubMed ID: 21181415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poplar Tree Response to Feeding by the Petiole Gall Aphid
    Kot I; Kmieć K
    Insects; 2020 May; 11(5):. PubMed ID: 32380670
    [No Abstract]   [Full Text] [Related]  

  • 10. Genetic variation in NIN1 and C/VIF1 genes is significantly associated with Populus angustifolia resistance to a galling herbivore, Pemphigus betae.
    Zinkgraf MS; Meneses N; Whitham TG; Allan GJ
    J Insect Physiol; 2016 Jan; 84():50-59. PubMed ID: 26518288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gall-forming aphids are protected (and benefit) from defoliating caterpillars: the role of plant-mediated mechanisms.
    Kurzfeld-Zexer L; Inbar M
    BMC Ecol Evol; 2021 Jun; 21(1):124. PubMed ID: 34144674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological response of Populus nigra 'Italica' to galling aphids feeding.
    Kmieć K; Kot I
    Plant Biol (Stuttg); 2021 Jul; 23(4):675-679. PubMed ID: 33780123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls.
    Rand K; Bar E; Ari MB; Davidovich-Rikanati R; Dudareva N; Inbar M; Lewinsohn E
    J Chem Ecol; 2017 Feb; 43(2):143-152. PubMed ID: 28108840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caterpillar mimicry by plant galls as a visual defense against herbivores.
    Yamazaki K
    J Theor Biol; 2016 Sep; 404():10-14. PubMed ID: 27220745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced invertase activities in the galls of Hormaphis hamamelidis.
    Rehill BJ; Schultz JC
    J Chem Ecol; 2003 Dec; 29(12):2703-20. PubMed ID: 14969357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A geographic mosaic of trophic interactions and selection: trees, aphids and birds.
    Smith DS; Bailey JK; Shuster SM; Whitham TG
    J Evol Biol; 2011 Feb; 24(2):422-9. PubMed ID: 21091573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?
    Wilson D
    Oecologia; 1995 Aug; 103(2):255-260. PubMed ID: 28306781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae).
    Formiga AT; Silveira FA; Fernandes GW; Isaias RM
    Plant Biol (Stuttg); 2015 Mar; 17(2):512-21. PubMed ID: 25124804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronism between Aspidosperma macrocarpon (Apocynaceae) resources allocation and the establishment of the gall inducer Pseudophacopteron sp. (Hemiptera: Psylloidea).
    Castro AC; Oliveira DC; Moreira AS; lsaias RM
    Rev Biol Trop; 2013 Dec; 61(4):1891-900. PubMed ID: 24432541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Petiole gall aphid (
    Ye J; Jiang Y; Veromann-Jürgenson LL; Niinemets Ü
    Trees (Berl West); 2019 Feb; 33(1):37-51. PubMed ID: 31700201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.