These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28312794)

  • 1. Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams.
    Mulholland PJ; Steinman AD; Marzolf ER; Hart DR; DeAngelis DL
    Oecologia; 1994 Jun; 98(1):40-47. PubMed ID: 28312794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light increases energy transfer efficiency in a boreal stream.
    Lesutienė J; Gorokhova E; Stankevičienė D; Bergman E; Greenberg L
    PLoS One; 2014; 9(11):e113675. PubMed ID: 25412343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-native earthworms in riparian soils increase nitrogen flux into adjacent aquatic ecosystems.
    Costello DM; Lamberti GA
    Oecologia; 2008 Dec; 158(3):499-510. PubMed ID: 18825416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient limitation of algal periphyton in streams along an acid mine drainage gradient.
    DeNicola DM; Lellock AJ
    J Phycol; 2015 Aug; 51(4):739-49. PubMed ID: 26986794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does an increase in irradiance influence periphyton in a heavily-grazed woodland stream?
    Steinman AD
    Oecologia; 1992 Aug; 91(2):163-170. PubMed ID: 28313452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lotic Ecosystem Response to a Chlorine Disturbance.
    Steinman AD; Mulholland PJ; Palumbo AV; DeAngelis DL; Flum TE
    Ecol Appl; 1992 Nov; 2(4):341-355. PubMed ID: 27759274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams.
    Ren Z; Niu D; Ma P; Wang Y; Fu H; Elser JJ
    Ecology; 2019 Aug; 100(8):e02755. PubMed ID: 31087341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periphyton Phosphorus Uptake in Response to Dynamic Concentrations in Streams: Assimilation and Changes to Intracellular Speciation.
    Pearce NJT; Parsons CT; Pomfret SM; Yates AG
    Environ Sci Technol; 2023 Mar; 57(11):4643-4655. PubMed ID: 36897624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antagonistic and synergistic effects on a stream periphyton community under the influence of pulsed flow velocity increase and nutrient enrichment.
    Bondar-Kunze E; Maier S; Schönauer D; Bahl N; Hein T
    Sci Total Environ; 2016 Dec; 573():594-602. PubMed ID: 27585428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of stream algae to grazing minnows and nutrients: a field test for interactions.
    Stewart AJ
    Oecologia; 1987 Apr; 72(1):1-7. PubMed ID: 28312888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of periphyton communities to abrupt changes in water temperature and velocity, and the relevance of morphology: A mesocosm approach.
    Bondar-Kunze E; Kasper V; Hein T
    Sci Total Environ; 2021 May; 768():145200. PubMed ID: 33736353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of microbial biofilms to ecosystem processes in stream mesocosms.
    Battin TJ; Kaplan LA; Denis Newbold J; Hansen CM
    Nature; 2003 Nov; 426(6965):439-42. PubMed ID: 14647381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying stream periphyton assemblage responses to nutrient amendments with a molecular approach.
    Hagy Iii JD; Houghton KA; Beddick DL; James JB; Friedman SD; Devereux R
    Freshw Sci; 2020 May; 39(2):292-308. PubMed ID: 35498625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient limitation of algae and macrophytes in streams: Integrating laboratory bioassays, field experiments, and field data.
    Mebane CA; Ray AM; Marcarelli AM
    PLoS One; 2021; 16(6):e0252904. PubMed ID: 34143815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periphyton biomass and life-form responses to a gradient of discharge in contrasting light and nutrients scenarios in experimental lowland streams.
    Pacheco JP; Calvo C; Aznarez C; Barrios M; Meerhoff M; Jeppesen E; Baattrup-Pedersen A
    Sci Total Environ; 2022 Feb; 806(Pt 1):150505. PubMed ID: 34844323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taxonomic Shift Over a Phosphorus Gradient Affects the Stoichiometry and Fatty Acid Composition of Stream Periphyton.
    Iannino A; Vosshage ATL; Weitere M; Fink P
    J Phycol; 2020 Dec; 56(6):1687-1695. PubMed ID: 32738149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal patterns of periphyton chlorophyll a related to pulp and paper mill discharges in four US receiving streams.
    Flinders CA; Minshall GW; Hall TJ; Rodgers JH
    Integr Environ Assess Manag; 2009 Apr; 5(2):259-69. PubMed ID: 19132809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grazer control of nutrient availability in the periphyton.
    McCormick PV; Stevenson RJ
    Oecologia; 1991 Apr; 86(2):287-291. PubMed ID: 28313212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen and phosphorus uptake in two Idaho (USA) headwater wilderness streams.
    Davis JC; Minshall GW
    Oecologia; 1999 May; 119(2):247-255. PubMed ID: 28307975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions among irradiance, nutrients, and herbivores constrain a stream algal community.
    Rosemond AD
    Oecologia; 1993 Jul; 94(4):585-594. PubMed ID: 28314001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.