BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28312836)

  • 1. Differential effect of tannic acid on two tree-feeding Lepidoptera: implications for theories of plant anti-herbivore chemistry.
    Karowe DN
    Oecologia; 1989 Sep; 80(4):507-512. PubMed ID: 28312836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tannin sensitivity in larvae ofMalacosoma disstria (Lepidoptera): Roles of the peritrophic envelope and midgut oxidation.
    Barbehenn RV; Martin MM
    J Chem Ecol; 1994 Aug; 20(8):1985-2001. PubMed ID: 24242724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant defenses in caterpillars: role of the ascorbate-recycling system in the midgut lumen.
    Barbehenn RV; Bumgarner SL; Roosen EF; Martin MM
    J Insect Physiol; 2001 Apr; 47(4-5):349-57. PubMed ID: 11166299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hydrolyzable and condensed tannin on growth and development of two species of polyphagous lepidoptera: Spodoptera eridania and Callosamia promethea.
    Manuwoto S; Scriber JM
    Oecologia; 1986 May; 69(2):225-230. PubMed ID: 28311363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fenton-type reactions and iron concentrations in the midgut fluids of tree-feeding caterpillars.
    Barbehenn R; Dodick T; Poopat U; Spencer B
    Arch Insect Biochem Physiol; 2005 Sep; 60(1):32-43. PubMed ID: 16116620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced effects of dietary tannic acid with chlorantraniliprole on life table parameters and nutritional physiology of Spodoptera exigua (Hübner).
    Hafeez M; Liu S; Jan S; Gulzar A; Fernández-Grandon GM; Qasim M; Khan KA; Ali B; Kedir SJ; Fahad M; Wang M
    Pestic Biochem Physiol; 2019 Mar; 155():108-118. PubMed ID: 30857620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars.
    Barbehenn R; Cheek S; Gasperut A; Lister E; Maben R
    J Chem Ecol; 2005 May; 31(5):969-88. PubMed ID: 16124227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental, gustatory, and behavioral responses of leafroller larvae, Choristoneura rosaceana, to tannic acid and glucose.
    Panzuto M; Mauffette Y; Alber PJ
    J Chem Ecol; 2002 Jan; 28(1):145-60. PubMed ID: 11868670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature and food quality effects on growth, consumption and post-ingestive utilization efficiencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae).
    Levesque KR; Levesque KR; Fortin M; Mauffette Y
    Bull Entomol Res; 2002 Apr; 92(2):127-36. PubMed ID: 12020370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking phenolic oxidation in the midgut lumen with oxidative stress in the midgut tissues of a tree-feeding caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae).
    Barbehenn RV; Maben RE; Knoester JJ
    Environ Entomol; 2008 Oct; 37(5):1113-8. PubMed ID: 19036189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antioxidants in the midgut fluids of a tannin-tolerant and a tannin-sensitive caterpillar: effects of seasonal changes in tree leaves.
    Barbehenn RV; Walker AC; Uddin F
    J Chem Ecol; 2003 May; 29(5):1099-116. PubMed ID: 12857024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spruce budworm growth, development and food utilization on young and old balsam fir trees.
    Bauce É; Crépin M; Carisey N
    Oecologia; 1994 May; 97(4):499-507. PubMed ID: 28313739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facultative monophagy as a consequence of prior feeding experience: behavioral and physiological specialization in Colias philodice larvae.
    Karowe DN
    Oecologia; 1989 Jan; 78(1):106-111. PubMed ID: 28311908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Tannic Acid on Nutrition and Activities of Detoxification Enzymes and Acetylcholinesterase of the Fall Webworm (Lepidoptera: Arctiidae).
    Yuan Y; Li L; Zhao J; Chen M
    J Insect Sci; 2020 Jan; 20(1):. PubMed ID: 32061083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.
    Barbehenn R; Weir Q; Salminen JP
    J Chem Ecol; 2008 Jun; 34(6):748-56. PubMed ID: 18473142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insecticidal fatty acids and triglycerides from Dirca palustris.
    Ramsewak RS; Nair MG; Murugesan S; Mattson WJ; Zasada J
    J Agric Food Chem; 2001 Dec; 49(12):5852-6. PubMed ID: 11743774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores : Implications for theories of plant defense.
    Martin JS; Martin MM; Bernays EA
    J Chem Ecol; 1987 Mar; 13(3):605-21. PubMed ID: 24301898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Food utilization and growth of cutworm Spodoptera litura Fabricius larvae exposed to nickel, and its effect on reproductive potential.
    Sun HX; Tang WC; Chen H; Chen W; Zhang M; Liu X; Zhang GR
    Chemosphere; 2013 Nov; 93(10):2319-26. PubMed ID: 24103438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Digestive and metabolic utilization of dietary nitrogen in rats receiving tannic acid, sulfite and ethanol, administrated singly or in combination].
    Suschetet M; Loisel W
    Ann Nutr Aliment; 1980; 34(1):101-20. PubMed ID: 7416658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tannic acid and oxidized tannic acid on the functional state of rat intestinal epithelium.
    Mitjavila S; Lacombe C; Carrera G; Derache R
    J Nutr; 1977 Dec; 107(12):2113-21. PubMed ID: 925759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.