These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28312842)

  • 21. Limitations of Photosynthesis in Pinus taeda L. (Loblolly Pine) at Low Soil Temperatures.
    Day TA; Heckathorn SA; Delucia EH
    Plant Physiol; 1991 Aug; 96(4):1246-54. PubMed ID: 16668326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of soil porosity on water use in Pinus taeda.
    Hacke UG; Sperry JS; Ewers BE; Ellsworth DS; Schäfer KV; Oren R
    Oecologia; 2000 Sep; 124(4):495-505. PubMed ID: 28308388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature effects on nitrogen form uptake by seedling roots of three contrasting conifers.
    Boczulak SA; Hawkins BJ; Roy R
    Tree Physiol; 2014 May; 34(5):513-23. PubMed ID: 24831958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water deficit affects mesophyll limitation of leaves more strongly in sun than in shade in two contrasting Picea asperata populations.
    Duan B; Li Y; Zhang X; Korpelainen H; Li C
    Tree Physiol; 2009 Dec; 29(12):1551-61. PubMed ID: 19825867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photosynthesis and water relations of the floodplain tree, boxelder (Acer negundo L.).
    Foster JR
    Tree Physiol; 1992 Sep; 11(2):133-49. PubMed ID: 14969957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings.
    Pumpanen J; Heinonsalo J; Rasilo T; Villemot J; Ilvesniemi H
    Tree Physiol; 2012 Jun; 32(6):724-36. PubMed ID: 22345325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research.
    Ryan MG
    Tree Physiol; 2013 Nov; 33(11):1123-31. PubMed ID: 24300337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings.
    Parraga-Aguado I; Querejeta JI; González-Alcaraz MN; Conesa HM
    Sci Total Environ; 2014 Jul; 485-486():406-414. PubMed ID: 24742549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that hydraulic conductance limits photosynthesis in old Pinus ponderosa trees.
    Hubbard RM; Bond BJ; Ryan MG
    Tree Physiol; 1999 Mar; 19(3):165-172. PubMed ID: 12651579
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees.
    Quentin AG; Crous KY; Barton CV; Ellsworth DS
    Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of low root temperature on net photosynthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmannii Parry ex Engelm.) seedlings.
    Delucia EH
    Tree Physiol; 1986 Dec; 2(1_2_3):143-154. PubMed ID: 14975849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Which are the most important parameters for modelling carbon assimilation in boreal Norway spruce under elevated [CO(2)] and temperature conditions?
    Hall M; Medlyn BE; Abramowitz G; Franklin O; Räntfors M; Linder S; Wallin G
    Tree Physiol; 2013 Nov; 33(11):1156-76. PubMed ID: 23525155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Weather and climate controls over the seasonal carbon isotope dynamics of sugars from subalpine forest trees.
    Hu J; Moore DJ; Monson RK
    Plant Cell Environ; 2010 Jan; 33(1):35-47. PubMed ID: 19843259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of season, temperature, and water stress effects on stomata using a leaf conductance model.
    Kaufmann MR
    Plant Physiol; 1982 May; 69(5):1023-6. PubMed ID: 16662337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of shoot structure on light interception and photosynthesis in conifers.
    Carter GA; Smith WK
    Plant Physiol; 1985 Dec; 79(4):1038-43. PubMed ID: 16664525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photosynthetic performance of invasive Pinus ponderosa and Juniperus virginiana seedlings under gradual soil water depletion.
    Bihmidine S; Bryan NM; Payne KR; Parde MR; Okalebo JA; Cooperstein SE; Awada T
    Plant Biol (Stuttg); 2010 Jul; 12(4):668-75. PubMed ID: 20636910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lack of photosynthetic or stomatal regulation after 9 years of elevated [CO2] and 4 years of soil warming in two conifer species at the alpine treeline.
    Streit K; Siegwolf RT; Hagedorn F; Schaub M; Buchmann N
    Plant Cell Environ; 2014 Feb; 37(2):315-26. PubMed ID: 24003840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photosynthetic functions of cembran pines and dwarf pines during winter at timberline as regulated by different temperatures, snowcover and light.
    Lehner G; Lütz C
    J Plant Physiol; 2003 Feb; 160(2):153-66. PubMed ID: 12685031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.
    Andrews SF; Flanagan LB; Sharp EJ; Cai T
    Tree Physiol; 2012 Feb; 32(2):146-60. PubMed ID: 22318220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.