These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28312981)

  • 1. The photosynthetic characteristics of papyrus in a tropical swamp.
    Jones MB
    Oecologia; 1987 Feb; 71(3):355-359. PubMed ID: 28312981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The diurnal course of plant water potential, stomatal conductance and transpiration in a papyrus (Cyperus papyrus L.) canopy.
    Jones MB; Muthuri FM
    Oecologia; 1984 Aug; 63(2):252-255. PubMed ID: 28311021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : II. The influence of climatic factors on carbon dioxide exchange and transpiration at the end of the dry period].
    Schulze E-; Lange OL; Koch W
    Oecologia; 1972 Dec; 8(4):334-355. PubMed ID: 28311256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf and canopy photosynthetic CO
    Piedade MT; Long SP; Junk WJ
    Oecologia; 1994 Mar; 97(2):193-201. PubMed ID: 28313928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period].
    Schulze ED; Lange OL; Koch W
    Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials.
    Pallas JE; Michel BE; Harris DG
    Plant Physiol; 1967 Jan; 42(1):76-88. PubMed ID: 16656488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light response characteristics of net CO
    Drake BG
    Oecologia; 1984 Aug; 63(2):263-270. PubMed ID: 28311023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High Stomatal Conductance in the Tomato
    Kaiser E; Morales A; Harbinson J; Heuvelink E; Marcelis LFM
    Front Plant Sci; 2020; 11():1317. PubMed ID: 32983206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stomatal dynamics and its importance to carbon gain in two rainforest Piper species : I. VPD effects on the transient stomatal response to lightflecks.
    Tinoco-Ojanguren C; Pearcy RW
    Oecologia; 1993 Jun; 94(3):388-394. PubMed ID: 28313676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit.
    Clough BF; Sim RG
    Oecologia; 1989 Apr; 79(1):38-44. PubMed ID: 28312810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Photosynthesis and Stomatal Conductance in Ricinus communis L. (Castor Bean) by Leaf to Air Vapor Pressure Deficit.
    Dai Z; Edwards GE; Ku MS
    Plant Physiol; 1992 Aug; 99(4):1426-34. PubMed ID: 16669054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patchy stomatal behavior during midday depression of leaf CO₂ exchange in tropical trees.
    Kamakura M; Kosugi Y; Takanashi S; Matsumoto K; Okumura M; Philip E
    Tree Physiol; 2011 Feb; 31(2):160-8. PubMed ID: 21383025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Midday depression of leaf CO2 exchange within the crown of Dipterocarpus sublamellatus in a lowland dipterocarp forest in Peninsular Malaysia.
    Kosugi Y; Takanashi S; Matsuo N; Nik AR
    Tree Physiol; 2009 Apr; 29(4):505-15. PubMed ID: 19203974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties.
    Meinzer FC; Goldstein G; Jackson P; Holbrook NM; Gutiérrez MV; Cavelier J
    Oecologia; 1995 Apr; 101(4):514-522. PubMed ID: 28306968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Response and acclimation of photosynthesis in rice leaves to free-air CO2 enrichment (FACE)].
    Liao Y; Chen G; Zhang H; Cai S; Zhu J; Han Y; Liu G; Xu D
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1205-9. PubMed ID: 12557660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The midday depression of CO2 assimilation in leaves of Arbutus unedo L.: diurnal changes in photosynthetic capacity related to changes in temperature and humidity.
    Raschke K; Resemann A
    Planta; 1986 Sep; 168(4):546-58. PubMed ID: 24232332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves.
    Raschke K; Hedrich R
    Planta; 1985 Jan; 163(1):105-18. PubMed ID: 24249275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological effects of kaolin applications in well-irrigated and water-stressed walnut and almond trees.
    Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD
    Ann Bot; 2006 Jul; 98(1):267-75. PubMed ID: 16735404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora.
    Shirke PA; Pathre UV
    J Exp Bot; 2004 Sep; 55(405):2111-20. PubMed ID: 15310819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.