BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28313115)

  • 1. Wing dimorphism in Gryllus rubens: genetic basis of morph determination and fertility differences between morphs.
    Zera AJ; Rankin MA
    Oecologia; 1989 Aug; 80(2):249-255. PubMed ID: 28313115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential allocation of resources underlies the dispersal-reproduction trade-off in the wing-dimorphic cricket, Gryllus rubens.
    Mole S; Zera AJ
    Oecologia; 1993 Feb; 93(1):121-127. PubMed ID: 28313784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EVOLUTIONARY ENDOCRINOLOGY OF JUVENILE HORMONE ESTERASE: FUNCTIONAL RELATIONSHIP WITH WING POLYMORPHISM IN THE CRICKET, GRYLLUS FIRMUS.
    Zera AJ; Huang Y
    Evolution; 1999 Jun; 53(3):837-847. PubMed ID: 28565624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. THE GENETIC BASIS OF THE TRADE-OFF BETWEEN CALLING AND WING MORPH IN MALES OF THE CRICKET GRYLLUS FIRMUS.
    Crnokrak P; Roff DA
    Evolution; 1998 Aug; 52(4):1111-1118. PubMed ID: 28565217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variations in fuel use in the flight muscles of wing-dimorphic Gryllus firmus and implications for morph-specific dispersal.
    Zhang BC; Jiang CJ; An CJ; Zhang QW; Zhao ZW
    Environ Entomol; 2011 Dec; 40(6):1566-71. PubMed ID: 22217774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of suppressed oviposition activity and flight muscle histolysis on food consumption and ovarian development in a wing-dimorphic cricket: an explanation for sporadic conclusions related to physiological trade-offs.
    Tanaka S
    J Insect Physiol; 2001 Jan; 47(1):83-94. PubMed ID: 11033170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diurnal and developmental differences in gene expression between adult dispersing and flightless morphs of the wing polymorphic cricket, Gryllus firmus: Implications for life-history evolution.
    Zera AJ; Vellichirammal NN; Brisson JA
    J Insect Physiol; 2018; 107():233-243. PubMed ID: 29656101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hormones in the field: evolutionary endocrinology of juvenile hormone and ecdysteroids in field populations of the wing-dimorphic cricket Gryllus firmus.
    Zera AJ; Zhao Z; Kaliseck K
    Physiol Biochem Zool; 2007; 80(6):592-606. PubMed ID: 17909996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolic basis of life history variation: genetic and phenotypic differences in lipid reserves among life history morphs of the wing-polymorphic cricket, Gryllus firmus.
    Zera AJ; Larsen A
    J Insect Physiol; 2001 Sep; 47(10):1147-1160. PubMed ID: 12770193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. THE EVOLUTION OF ALTERNATE MORPHOLOGIES: FITNESS AND WING MORPHOLOGY IN MALE SAND CRICKETS.
    Roff DA; Fairbairn DJ
    Evolution; 1993 Oct; 47(5):1572-1584. PubMed ID: 28564895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Juvenile hormone titer and morph-specific reproduction in the wing-polymorphic cricket, Gryllus firmus.
    Cisper G; Zera AJ; Borst DW
    J Insect Physiol; 2000 Apr; 46(4):585-596. PubMed ID: 12770222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THE EVOLUTION OF THRESHOLD TRAITS: A QUANTITATIVE GENETIC ANALYSIS OF THE PHYSIOLOGICAL AND LIFE-HISTORY CORRELATES OF WING DIMORPHISM IN THE SAND CRICKET.
    Roff DA; Stirling G; Fairbairn DJ
    Evolution; 1997 Dec; 51(6):1910-1919. PubMed ID: 28565097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two insulin receptors determine alternative wing morphs in planthoppers.
    Xu HJ; Xue J; Lu B; Zhang XC; Zhuo JC; He SF; Ma XF; Jiang YQ; Fan HW; Xu JY; Ye YX; Pan PL; Li Q; Bao YY; Nijhout HF; Zhang CX
    Nature; 2015 Mar; 519(7544):464-7. PubMed ID: 25799997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morph-specific life-history correlations in a wing-dimorphic water strider.
    Hyun H; Han CS
    J Evol Biol; 2021 Aug; 34(8):1340-1346. PubMed ID: 34109692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo transcriptome assembly from fat body and flight muscles transcripts to identify morph-specific gene expression profiles in Gryllus firmus.
    Nanoth Vellichirammal N; Zera AJ; Schilder RJ; Wehrkamp C; Riethoven JJ; Brisson JA
    PLoS One; 2014; 9(1):e82129. PubMed ID: 24416137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morph-associated JH titer diel rhythm in Gryllus firmus: Experimental verification of its circadian basis and cycle characterization in artificially selected lines raised in the field.
    Zera AJ; Zhao Z
    J Insect Physiol; 2009 May; 55(5):450-8. PubMed ID: 19100744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endocrine-genetic basis of life-history variation: the relationship between the ecdysteroid titer and morph-specific reproduction in the wing-polymorphic cricket Gryllus firmus.
    Zera AJ; Bottsford J
    Evolution; 2001 Mar; 55(3):538-49. PubMed ID: 11327161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A morph-specific daily cycle in the rate of JH biosynthesis underlies a morph-specific daily cycle in the hemolymph JH titer in a wing-polymorphic cricket.
    Zhao Z; Zera AJ
    J Insect Physiol; 2004 Oct; 50(10):965-73. PubMed ID: 15518664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative contribution of genetic and environmental factors to determination of wing morphs of the brown planthopper Nilaparvata lugens.
    Zhang C; Mao MS; Liu XD
    Insect Sci; 2023 Feb; 30(1):208-220. PubMed ID: 35306741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fecundity in relation to wing-morph of three closely related species of the melanocephalus group of the genus Calathus (Coleoptera: Carabidae).
    Aukema B
    Oecologia; 1991 Jun; 87(1):118-126. PubMed ID: 28313361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.