BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28313119)

  • 21. The smallest but fastest: ecophysiological characteristics of traps of aquatic carnivorous Utricularia.
    Adamec L
    Plant Signal Behav; 2011 May; 6(5):640-6. PubMed ID: 21499028
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bladderworts, the smallest known suction feeders, generate inertia-dominated flows to capture prey.
    Müller UK; Berg O; Schwaner JM; Brown MD; Li G; Voesenek CJ; van Leeuwen JL
    New Phytol; 2020 Oct; 228(2):586-595. PubMed ID: 32506423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous firings of carnivorous aquatic Utricularia traps: temporal patterns and mechanical oscillations.
    Vincent O; Roditchev I; Marmottant P
    PLoS One; 2011; 6(5):e20205. PubMed ID: 21647417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resting electrical network activity in traps of the aquatic carnivorous plants of the genera Aldrovanda and Utricularia.
    Masi E; Ciszak M; Colzi I; Adamec L; Mancuso S
    Sci Rep; 2016 Apr; 6():24989. PubMed ID: 27117956
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Complexity and diversity of motion amplification and control strategies in motile carnivorous plant traps.
    Bauer U; Müller UK; Poppinga S
    Proc Biol Sci; 2021 May; 288(1951):20210771. PubMed ID: 34036802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba.
    Carretero-Paulet L; Librado P; Chang TH; Ibarra-Laclette E; Herrera-Estrella L; Rozas J; Albert VA
    Mol Biol Evol; 2015 May; 32(5):1284-95. PubMed ID: 25637935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of traps for the control of sheep blowfly in the U.K.
    Harvey B; Bakewell M; Felton T; Stafford K; Coles GC; Wall R
    Med Vet Entomol; 2010 Jun; 24(2):210-3. PubMed ID: 20202108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective prey attraction in the rare Drosophyllum lusitanicum, a flypaper-trap carnivorous plant.
    Bertol N; Paniw M; Ojeda F
    Am J Bot; 2015 May; 102(5):689-94. PubMed ID: 26022483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular evidence for the common origin of snap-traps among carnivorous plants.
    Cameron KM; Wurdack KJ; Jobson RW
    Am J Bot; 2002 Sep; 89(9):1503-9. PubMed ID: 21665752
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new model for the evolution of carnivory in the bladderwort plant (utricularia): adaptive changes in cytochrome C oxidase (COX) provide respiratory power.
    Laakkonen L; Jobson RW; Albert VA
    Plant Biol (Stuttg); 2006 Nov; 8(6):758-64. PubMed ID: 17203431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carnivorous Utricularia: the buckling scenario.
    Vincent O; Marmottant P
    Plant Signal Behav; 2011 Nov; 6(11):1752-4. PubMed ID: 22067995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetics and the evolution of carnivorous plants--Darwin's 'most wonderful plants in the world'.
    Ellison AM; Gotelli NJ
    J Exp Bot; 2009; 60(1):19-42. PubMed ID: 19213724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural gradients and anisotropic hydraulic conductivity in the enigmatic eel traps of carnivorous corkscrew plants (Genlisea spp.).
    Carmesin CF; Fleischmann AS; Klepsch MM; Westermeier AS; Speck T; Jansen S; Poppinga S
    Am J Bot; 2021 Dec; 108(12):2356-2370. PubMed ID: 34648183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants.
    Płachno BJ; Adamec L; Lichtscheidl IK; Peroutka M; Adlassnig W; Vrba J
    Plant Biol (Stuttg); 2006 Nov; 8(6):813-20. PubMed ID: 16865659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The utilization of paramecia by the carnivorous plant Utricularia gibba.
    Sorenson DR; Jackson WT
    Planta; 1968 Jun; 83(2):166-70. PubMed ID: 24519140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Snapshot prey spectrum analysis of the phylogenetically early-diverging carnivorous Utricularia multifida from U. section Polypompholyx (Lentibulariaceae).
    Horstmann M; Fleischmann A; Tollrian R; Poppinga S
    PLoS One; 2021; 16(4):e0249976. PubMed ID: 33826676
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanical model of the ultrafast underwater trap of Utricularia.
    Joyeux M; Vincent O; Marmottant P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021911. PubMed ID: 21405867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Ability of Tetrahymena utriculariae (Ciliophora, Oligohymenophorea) to Colonize Traps of Different Species of Aquatic Carnivorous Utricularia.
    Sirová D; Kreidlová V; Adamec L; Vrba J
    J Eukaryot Microbiol; 2020 Sep; 67(5):608-611. PubMed ID: 32498121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A dynamical model for the Utricularia trap.
    Llorens C; Argentina M; Bouret Y; Marmottant P; Vincent O
    J R Soc Interface; 2012 Nov; 9(76):3129-39. PubMed ID: 22859569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Research on the practical parameters of sex pheromone traps for the oriental fruit moth.
    Zhao ZG; Rong EH; Li SC; Zhang LJ; Kong WN; Hu RS; Zhang JT; Ma RY
    Pest Manag Sci; 2013 Oct; 69(10):1181-6. PubMed ID: 23749472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.