These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28313119)

  • 41. Ultra-fast underwater suction traps.
    Vincent O; Weisskopf C; Poppinga S; Masselter T; Speck T; Joyeux M; Quilliet C; Marmottant P
    Proc Biol Sci; 2011 Oct; 278(1720):2909-14. PubMed ID: 21325323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Different mechanics of snap-trapping in the two closely related carnivorous plants Dionaea muscipula and Aldrovanda vesiculosa.
    Poppinga S; Joyeux M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041928. PubMed ID: 22181196
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Seasonal dynamics of three insect pests in the cabbage field in central Slovenia.
    Trdan S; Vidrih M; Bobnar A
    Commun Agric Appl Biol Sci; 2008; 73(3):557-61. PubMed ID: 19226795
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficacy of pheromone trapping of the sweetpotato weevil (Coleoptera: Brentidae): based on dose, septum age, attractive radius, and mass trapping.
    Reddy GV; Wu S; Mendi RC; Miller RH
    Environ Entomol; 2014 Jun; 43(3):767-73. PubMed ID: 24709382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The possibility of determining the age of colonies of clonally propagating herbaceous species from historic records: the case of Aster novi-belgii L. (first recorded as A. salignus Willd.) at Wicken Fen Nature Reserve, Cambridgeshire, England.
    Briggs D; Block M; Jennings S
    New Phytol; 1989 Aug; 112(4):577-584. PubMed ID: 29265438
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The feeding ecology of a carnivorous plant (Pinguicula nevadense): prey analysis and capture constraints.
    Zamora R
    Oecologia; 1990 Oct; 84(3):376-379. PubMed ID: 28313028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An aquatic light trap designed for live capture of predatory Tropisternus sp (Coleoptera: Hydrophilidae) larvae in Arkansas rice fields.
    Dennett JA; Meisch MV
    J Am Mosq Control Assoc; 2001 Dec; 17(4):268-71. PubMed ID: 11804467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prey capture by three Pinguicula species in a subarctic environment.
    Karlsson PS; Thorén LM; Hanslin HM
    Oecologia; 1994 Sep; 99(1-2):188-193. PubMed ID: 28313965
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Some features influencing the efficiency of pitfall traps.
    Luff ML
    Oecologia; 1975 Dec; 19(4):345-357. PubMed ID: 28309246
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of Pheromone Release Rate and Trap Placement on Trapping of Agrilus planipennis (Coleoptera: Buprestidae) in Canada.
    Ryall KL; Silk PJ; Fidgen J; Mayo P; Lavallée R; Guertin C; Scarr T
    Environ Entomol; 2015 Jun; 44(3):734-45. PubMed ID: 26313980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficiency of insect capture by Sarracenia purpurea (Sarraceniaceae), the northern pitcher plant.
    Newell S; Nastase A
    Am J Bot; 1998 Jan; 85(1):88. PubMed ID: 21684883
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Capture of Schistosoma mansoni miracidia and cercariae by carnivorous aquatic vascular plants of the genus Utricularia.
    Gibson M; Warren KS
    Bull World Health Organ; 1970; 42(5):833-5. PubMed ID: 5311069
    [No Abstract]   [Full Text] [Related]  

  • 53. Form Follows Function: How to Build a Deadly Trap.
    Geitmann A
    Cell; 2020 Mar; 180(5):826-828. PubMed ID: 32142675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Form follows function: morphological diversification and alternative trapping strategies in carnivorous Nepenthes pitcher plants.
    Bauer U; Clemente CJ; Renner T; Federle W
    J Evol Biol; 2012 Jan; 25(1):90-102. PubMed ID: 22023155
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of CDC light traps for mosquito surveillance in a malaria endemic area on the Thai-Myanmar border.
    Sriwichai P; Karl S; Samung Y; Sumruayphol S; Kiattibutr K; Payakkapol A; Mueller I; Yan G; Cui L; Sattabongkot J
    Parasit Vectors; 2015 Dec; 8():636. PubMed ID: 26666683
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Faster than their prey: new insights into the rapid movements of active carnivorous plants traps.
    Poppinga S; Masselter T; Speck T
    Bioessays; 2013 Jul; 35(7):649-57. PubMed ID: 23613360
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transfer cells in traps of the carnivorous plant Utricularia monanthos.
    Fineran BA; Lee MS
    J Ultrastruct Res; 1974 Jul; 48(1):162-6. PubMed ID: 4834850
    [No Abstract]   [Full Text] [Related]  

  • 58. THE MECHANISM OF THE WATER TIGHT DOOR OF THE UTRICULARIA TRAP.
    Lloyd FE
    Plant Physiol; 1929 Jan; 4(1):87-102.1. PubMed ID: 16652602
    [No Abstract]   [Full Text] [Related]  

  • 59. Cytokinins and auxins in organs of aquatic carnivorous plants: what do they reflect?
    Adamec L; Plačková L; Doležal K
    Ann Bot; 2022 Dec; 130(6):869-882. PubMed ID: 36215097
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biological control of Aedes mosquito larvae with carnivorous aquatic plant, Utricularia macrorhiza.
    Couret J; Notarangelo M; Veera S; LeClaire-Conway N; Ginsberg HS; LeBrun RL
    Parasit Vectors; 2020 Apr; 13(1):208. PubMed ID: 32317006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.