These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28313150)

  • 1. The effect of soil nutrient status on prey utilization in four carnivorous plants.
    Karlsson PS; Nordell KO; Carlsson BÅ; Svensson BM
    Oecologia; 1991 Mar; 86(1):1-7. PubMed ID: 28313150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen uptake from prey and substrate as affected by prey capture level and plant reproductive status in four carnivorous plant species.
    Hanslin HM; Karlsson PS
    Oecologia; 1996 May; 106(3):370-375. PubMed ID: 28307324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen deposition and prey nitrogen uptake control the nutrition of the carnivorous plant Drosera rotundifolia.
    Millett J; Foot GW; Svensson BM
    Sci Total Environ; 2015 Apr; 512-513():631-636. PubMed ID: 25655989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prey capture by three Pinguicula species in a subarctic environment.
    Karlsson PS; Thorén LM; Hanslin HM
    Oecologia; 1994 Sep; 99(1-2):188-193. PubMed ID: 28313965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis.
    Pavlovič A; Krausko M; Libiaková M; Adamec L
    Ann Bot; 2014 Jan; 113(1):69-78. PubMed ID: 24201141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf NPK stoichiometry, δ
    Givnish TJ; Shiba ZW
    Ecology; 2022 Dec; 103(12):e3825. PubMed ID: 35861100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of a carnivorous plant to prey and inorganic nutrients in a Mediterranean environment.
    Zamora R; Gómez JM; Hódar JA
    Oecologia; 1997 Aug; 111(4):443-451. PubMed ID: 28308104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth and tissue nutrient responses of adults of Sarracenia alata to prey exclusion, nutrient addition, and neighbor reduction.
    Holloway JC; Stephen Brewer J
    Am J Bot; 2022 Dec; 109(12):2006-2017. PubMed ID: 36468545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliance on prey-derived nitrogen by the carnivorous plant Drosera rotundifolia decreases with increasing nitrogen deposition.
    Millett J; Svensson BM; Newton J; Rydin H
    New Phytol; 2012 Jul; 195(1):182-8. PubMed ID: 22506640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The significance of carnivory for the fitness of Drosera in its natural habitat : 2. The amount of captured prey and its effect on Drosera intermedia and Drosera rotundifolia.
    Thum M
    Oecologia; 1989 Nov; 81(3):401-411. PubMed ID: 28311196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping efficiency of three carnivorous Pinguicula species.
    Karlsson PS; Nordell KO; Eirefelt S; Svensson A
    Oecologia; 1987 Oct; 73(4):518-521. PubMed ID: 28311967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resource availability affects investment in carnivory in Drosera rotundifolia.
    Thorén LM; Tuomi J; Kämäräinen T; Laine K
    New Phytol; 2003 Aug; 159(2):507-511. PubMed ID: 33873350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent ecophysiological, biochemical and evolutional insights into plant carnivory.
    Adamec L; Matušíková I; Pavlovič A
    Ann Bot; 2021 Aug; 128(3):241-259. PubMed ID: 34111238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant carnivory beyond bogs: reliance on prey feeding in Drosophyllum lusitanicum (Drosophyllaceae) in dry Mediterranean heathland habitats.
    Paniw M; Gil-Cabeza E; Ojeda F
    Ann Bot; 2017 Apr; 119(6):1035-1041. PubMed ID: 28065921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The significance of carnivory for the fitness of Drosera in its natural habitat : 1. The reactions of Drosera intermedia and D. rotundifolia to supplementary feeding.
    Thum M
    Oecologia; 1988 Apr; 75(3):472-480. PubMed ID: 28312699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental differences between sites control the diet and nutrition of the carnivorous plant
    Cook JL; Newton J; Millett J
    Plant Soil; 2018; 423(1):41-58. PubMed ID: 31402798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Picky carnivorous plants? Investigating preferences for preys' trophic levels - a stable isotope natural abundance approach with two terrestrial and two aquatic Lentibulariaceae tested in Central Europe.
    Klink S; Giesemann P; Gebauer G
    Ann Bot; 2019 Jul; 123(7):1167-1177. PubMed ID: 30865264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prey exclusion combined with simulated fire increases subsequent prey-capture potential in the pale pitcher plant, Sarracenia alata.
    Abbott MJ; Brewer JS
    Am J Bot; 2020 Nov; 107(11):1606-1613. PubMed ID: 33145765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of prey capture and prey availability among populations of the carnivorous plant Pinguicula moranensis (Lentibulariaceae) along an environmental gradient.
    Alcalá RE; Domínguez CA
    Am J Bot; 2003 Sep; 90(9):1341-8. PubMed ID: 21659234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomic analysis reveals reliance on secondary plant metabolites to facilitate carnivory in the Cape sundew, Drosera capensis.
    Hatcher CR; Sommer U; Heaney LM; Millett J
    Ann Bot; 2021 Aug; 128(3):301-314. PubMed ID: 34077503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.