BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28313290)

  • 1. Seasonal flooding, soil salinity and primary production in northern prairie marshes.
    Neill C
    Oecologia; 1993 Oct; 95(4):499-505. PubMed ID: 28313290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States.
    Gough L; Grace JB
    Oecologia; 1998 Dec; 117(4):527-535. PubMed ID: 28307678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salinity pulses interact with seasonal dry-down to increase ecosystem carbon loss in marshes of the Florida Everglades.
    Wilson BJ; Servais S; Mazzei V; Kominoski JS; Hu M; Davis SE; Gaiser E; Sklar F; Bauman L; Kelly S; Madden C; Richards J; Rudnick D; Stachelek J; Troxler TG
    Ecol Appl; 2018 Dec; 28(8):2092-2108. PubMed ID: 30376192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of flooding disturbance on aboveground biomass of Leymus chinensis grassland--a preliminary study].
    Wang Z; Zhu T
    Ying Yong Sheng Tai Xue Bao; 2003 Dec; 14(12):2162-6. PubMed ID: 15031908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Threshhold for recovery in the marsh halophyte Spartina alterniflora grown under the combined effects of salinity and soil drying.
    Brown CE; Pezeshki SR
    J Plant Physiol; 2007 Mar; 164(3):274-82. PubMed ID: 16542750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between morphological and physiological responses to waterlogging and salinity in Sporobolus virginicus (L.) Kunth.
    Naidoo G; Mundree SG
    Oecologia; 1993 Mar; 93(3):360-366. PubMed ID: 28313436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sea-level rise will reduce net CO
    Li YL; Guo HQ; Ge ZM; Wang DQ; Liu WL; Xie LN; Li SH; Tan LS; Zhao B; Li XZ; Tang JW
    Sci Total Environ; 2020 Dec; 747():141214. PubMed ID: 32795794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water salinity and inundation control soil carbon decomposition during salt marsh restoration: An incubation experiment.
    Wang F; Kroeger KD; Gonneea ME; Pohlman JW; Tang J
    Ecol Evol; 2019 Feb; 9(4):1911-1921. PubMed ID: 30847081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus alleviation of salinity stress: effects of saltwater intrusion on an Everglades freshwater peat marsh.
    Wilson BJ; Servais S; Charles SP; Mazzei V; Gaiser EE; Kominoski JS; Richards JH; Troxler TG
    Ecology; 2019 May; 100(5):e02672. PubMed ID: 30942486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive.
    Ben Ahmed C; Magdich S; Ben Rouina B; Boukhris M; Ben Abdullah F
    J Environ Manage; 2012 Dec; 113():538-44. PubMed ID: 22572465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flood tolerance and the distribution of Iva frutescens across New England salt marshes.
    Bertness MD; Wikler K; Chatkupt T
    Oecologia; 1992 Aug; 91(2):171-178. PubMed ID: 28313453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.
    Yang WH; Silver WL
    Glob Chang Biol; 2016 Jun; 22(6):2228-37. PubMed ID: 26718748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of flooding frequencies on soil carbon and nitrogen stocks in river marginal wetlands in a ten-year period.
    Bai J; Yu L; Du S; Wei Z; Liu Y; Zhang L; Zhang G; Wang X
    J Environ Manage; 2020 Aug; 267():110618. PubMed ID: 32349953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water Salinity Should Be Reduced for Irrigation to Minimize Its Risk of Increased Soil N₂O Emissions.
    Wei Q; Xu J; Liao L; Li Y; Wang H; Rahim SF
    Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30261593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Declines in plant productivity drive loss of soil elevation in a tidal freshwater marsh exposed to saltwater intrusion.
    Solohin E; Widney SE; Craft CB
    Ecology; 2020 Dec; 101(12):e03148. PubMed ID: 33459360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensor-Based Assessment of Soil Salinity during the First Years of Transition from Flood to Sprinkler Irrigation.
    Casterad MA; Herrero J; Betrán JA; Ritchie G
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29462981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen availability affects the responses of marsh grass and sedge plants (Phragmites australis and Bolboschoenus planiculmis) to flooding time.
    Tang H; Liu Y; Lou Y; Yu D; Zhou M; Lu X; Jiang M
    Sci Total Environ; 2024 Jan; 908():168008. PubMed ID: 37914133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of repeated coastal flooding on soil and groundwater following managed dike realignment.
    Tackley HA; Kurylyk BL; Lake CB; Lapen DR; van Proosdij D
    Sci Total Environ; 2023 Oct; 893():164957. PubMed ID: 37331400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen fixation and nitrogen limitation of primary production along a natural marsh chronosequence.
    Tyler AC; Mastronicola TA; McGlathery KJ
    Oecologia; 2003 Aug; 136(3):431-8. PubMed ID: 12750992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plants mediate soil organic matter decomposition in response to sea level rise.
    Mueller P; Jensen K; Megonigal JP
    Glob Chang Biol; 2016 Jan; 22(1):404-14. PubMed ID: 26342160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.