These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28313299)

  • 1. Effects of nitrogen supply and elevated carbon dioxide on construction cost in leaves of Pinus taeda (L.) seedlings.
    Griffin KL; Thomas RB; Strain BR
    Oecologia; 1993 Oct; 95(4):575-580. PubMed ID: 28313299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization.
    Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH
    Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response.
    Phillips RP; Bernhardt ES; Schlesinger WH
    Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings.
    Tjoelker MG; Luxmoore RJ
    New Phytol; 1991 Sep; 119(1):69-81. PubMed ID: 33874340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loblolly pine grown under elevated CO
    Williams RS; Lincoln DE; Thomas RB
    Oecologia; 1994 Jun; 98(1):64-71. PubMed ID: 28312797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The response of coarse root biomass to long-term CO
    Maier CA; Johnsen KH; Anderson PH; Palmroth S; Kim D; McCarthy HR; Oren R
    Glob Chang Biol; 2022 Feb; 28(4):1458-1476. PubMed ID: 34783402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.
    Oishi AC; Palmroth S; Johnsen KH; McCarthy HR; Oren R
    Glob Chang Biol; 2014 Apr; 20(4):1146-60. PubMed ID: 24115580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen dynamics and growth of seedlings of an N-fixing tree (Gliricidia sepium (Jacq.) Walp.) exposed to elevated atmospheric carbon dioxide.
    Thomas RB; Richter DD; Ye H; Heine PR; Strain BR
    Oecologia; 1991 Nov; 88(3):415-421. PubMed ID: 28313805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of elevated CO2 and mycorrhizae on nitrogen acquisition: contrasting responses in Pinus taeda and Liquidambar styraciflua.
    Constable JV; Bassirirad H; Lussenhop J; Zerihun A
    Tree Physiol; 2001 Feb; 21(2-3):83-91. PubMed ID: 11303652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of predicted future and current atmospheric temperature and [CO2] and high and low soil moisture on gas exchange and growth of Pinus taeda seedlings at cool and warm sites in the species range.
    Wertin TM; McGuire MA; Teskey RO
    Tree Physiol; 2012 Jul; 32(7):847-58. PubMed ID: 22696270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and photosynthesis of loblolly pine (Pinus taeda) after exposure to elevated CO(2) for 19 months in the field.
    Tissue DT; Thomas RB; Strain BR
    Tree Physiol; 1996; 16(1_2):49-59. PubMed ID: 14871747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesophyll conductance in leaves of Japanese white birch (Betula platyphylla var. japonica) seedlings grown under elevated CO2 concentration and low N availability.
    Kitao M; Yazaki K; Kitaoka S; Fukatsu E; Tobita H; Komatsu M; Maruyama Y; Koike T
    Physiol Plant; 2015 Dec; 155(4):435-45. PubMed ID: 25690946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth and photosynthetic responses to ozone of Siebold's beech seedlings grown under elevated CO
    Watanabe M; Li J; Matsumoto M; Aoki T; Ariura R; Fuse T; Zhang Y; Kinose Y; Yamaguchi M; Izuta T
    Environ Pollut; 2022 Jul; 304():119233. PubMed ID: 35358628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pinus taeda clones and soil nutrient availability: effects of soil organic matter incorporation and fertilization on biomass partitioning and leaf physiology.
    Tyree MC; Seiler JR; Maier CA; Johnsen KH
    Tree Physiol; 2009 Sep; 29(9):1117-31. PubMed ID: 19608598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide.
    DeLucia EH; George K; Hamilton JG
    Tree Physiol; 2002 Oct; 22(14):1003-10. PubMed ID: 12359527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sagebrush carbon allocation patterns and grasshopper nutrition: the influence of CO
    Johnson RH; Lincoln DE
    Oecologia; 1991 Jun; 87(1):127-134. PubMed ID: 28313362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of leaf nutrient status on photosynthetic capacity in loblolly pine (Pinus taeda L.) seedlings grown in elevated atmospheric CO(2).
    Thomas RB; Lewis JD; Strain BR
    Tree Physiol; 1994; 14(7_9):947-960. PubMed ID: 14967661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of elevated CO
    Gebauer RL; Strain BR; Reynolds JF
    Oecologia; 1997 Dec; 113(1):29-36. PubMed ID: 28307291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.