BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28313372)

  • 21. Diurnal modulation of phosphoenolpyruvate carboxylation in pea leaves and roots as related to tissue malate concentrations and to the nitrogen source.
    Leport L; Kandlbinder A; Baur B; Kaiser WM
    Planta; 1996 Apr; 198(4):495-501. PubMed ID: 28321658
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Not Available].
    Winter K
    Oecologia; 1974 Dec; 15(4):383-392. PubMed ID: 28308633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Properties of phosphoenolpyruvate carboxylase in rapidly prepared, desalted leaf extracts of the Crassulacean acid metabolism plant Mesembryanthemum crystallinum L.
    Winter K
    Planta; 1982 May; 154(4):298-308. PubMed ID: 24276156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crassulacean acid metabolism: a continuous or discrete trait?
    Winter K; Holtum JA; Smith JA
    New Phytol; 2015 Oct; 208(1):73-8. PubMed ID: 25975197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Light/Dark Cycle on Photosynthetic Pathway Switching and CO
    Cheng Y; He D; He J; Niu G; Gao R
    Front Plant Sci; 2019; 10():659. PubMed ID: 31178881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterns of gas exchange and organic acid oscillations in tropical trees of the genus Clusia.
    Franco AC; Ball E; Lüttge U
    Oecologia; 1990 Nov; 85(1):108-114. PubMed ID: 28310962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in xanthophyll-cycle components and in fluorescence yield in leaves of a crassulacean-acid-metabolism plant, Clusia rosea Jacq., throughout a 12-hour photoperiod of constant irradiance.
    Winter K; Lesch M; Diaz M
    Planta; 1990 Sep; 182(2):181-5. PubMed ID: 24197093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Severe Water Stress on Aspects of Crassulacean Acid Metabolism in Xerosicyos.
    Bastide B; Sipes D; Hann J; Ting IP
    Plant Physiol; 1993 Dec; 103(4):1089-1096. PubMed ID: 12232003
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Daily Changes in CO(2) and Water Vapor Exchange, Chlorophyll Fluorescence, and Leaf Water Relations in the Halophyte Mesembryanthemum crystallinum during the Induction of Crassulacean Acid Metabolism in Response to High NaCl Salinity.
    Winter K; Gademann R
    Plant Physiol; 1991 Mar; 95(3):768-76. PubMed ID: 16668052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nocturnal versus diurnal CO2 uptake: how flexible is Agave angustifolia?
    Winter K; Garcia M; Holtum JA
    J Exp Bot; 2014 Jul; 65(13):3695-703. PubMed ID: 24648568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the ecophysiology of the Clusiaceae in Trinidad: expression of CAM in Clusia minor L. during the transition from wet to dry season and characterization of three endemic species.
    Borland AM; Griffiths H; Maxwell C; Broadmeadow MSJ; Griffiths NM; Barnes JD
    New Phytol; 1992 Oct; 122(2):349-357. PubMed ID: 33873993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative study on the regulation of C(3) and C (4) carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana and the C(3)-CAM intermediate Clusia minor.
    Borland AM; Griffiths H
    Planta; 1997 Mar; 201(3):368-78. PubMed ID: 19343414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The contribution of crassulacean acid metabolism to the annual productivity of two aquatic vascular plants.
    Boston HL; Adams MS
    Oecologia; 1986 Mar; 68(4):615-622. PubMed ID: 28311722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The subdominant status of Echinocereus viridiflorus and Mammillaria vivipara in the shortgrass prairie: The role of temperature and water effects on gas exchange.
    Green JM; Williams GJ
    Oecologia; 1982 Jan; 52(1):43-48. PubMed ID: 28310107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discrimination Processes and Shifts in Carboxylation during the Phases of Crassulacean Acid Metabolism.
    Roberts A; Borland AM; Griffiths H
    Plant Physiol; 1997 Apr; 113(4):1283-1292. PubMed ID: 12223674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients.
    Winter K; Holtum JAM
    Funct Plant Biol; 2011 Jul; 38(7):576-582. PubMed ID: 32480910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CAM-physiology and carbon gain of the orchid Phalaenopsis in response to light intensity, light integral and CO
    Hogewoning SW; van den Boogaart SAJ; van Tongerlo E; Trouwborst G
    Plant Cell Environ; 2021 Mar; 44(3):762-774. PubMed ID: 33244775
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [CAM in Tillandsia usneoides: Studies on the pathway of carbon and the dependency of CO2-exchange on light intensity, temperature and water content of the plant].
    Kluge M; Lange OL; Eichmann MV; Schmid R
    Planta; 1973 Dec; 112(4):357-72. PubMed ID: 24468815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosotynthesis in hemiepiphytic species of Clusia and Ficus.
    Ting IP; Hann J; Holbrook NM; Putz FE; Sternberg LD; Price D; Goldstein G
    Oecologia; 1987 Dec; 74(3):339-346. PubMed ID: 28312470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphoenolpyruvate carboxylase genes in C3, crassulacean acid metabolism (CAM) and C3/CAM intermediate species of the genus Clusia: rapid reversible C3/CAM switches are based on the C3 housekeeping gene.
    Vaasen A; Begerow D; Hampp R
    Plant Cell Environ; 2006 Dec; 29(12):2113-23. PubMed ID: 17081245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.