BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28313379)

  • 1. Density effects of flowering phenology and mating potential in Nicotiana alata.
    Lyons EE; Mully TW
    Oecologia; 1992 Aug; 91(1):93-100. PubMed ID: 28313379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The strength of assortative mating for flowering date and its basis in individual variation in flowering schedule.
    Weis AE; Nardone E; Fox GA
    J Evol Biol; 2014 Oct; 27(10):2138-51. PubMed ID: 25186618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Among-individual variation in flowering phenology affects flowering synchrony and mating opportunity.
    Shelton WR; Mitchell RJ; Christopher DA; Jack LP; Karron JD
    Am J Bot; 2024 Jan; 111(1):e16269. PubMed ID: 38126922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mating between Echinacea angustifolia (Asteraceae) individuals increases with their flowering synchrony and spatial proximity.
    Ison JL; Wagenius S; Reitz D; Ashley MV
    Am J Bot; 2014 Jan; 101(1):180-9. PubMed ID: 24388964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ASSORTATIVE MATING AND NATURAL SELECTION IN AN IRIS HYBRID ZONE.
    Cruzan MB; Arnold ML
    Evolution; 1994 Dec; 48(6):1946-1958. PubMed ID: 28565161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-dependent flowering phenology, outcrossing, and reproduction in Impatiens capensis.
    Schmitt J; Eccleston J; Ehrhardt DW
    Oecologia; 1987 Jun; 72(3):341-347. PubMed ID: 28311127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic variation in flowering time induces phenological assortative mating: quantitative genetic methods applied to Brassica rapa.
    Weis AE; Kossler TM
    Am J Bot; 2004 Jun; 91(6):825-36. PubMed ID: 21653438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual flowering phenology, plant size, and reproductive success in Linanthus androsaceus, a California annual.
    Schmitt J
    Oecologia; 1983 Aug; 59(1):135-40. PubMed ID: 25024159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenological change in a spring ephemeral: implications for pollination and plant reproduction.
    Gezon ZJ; Inouye DW; Irwin RE
    Glob Chang Biol; 2016 May; 22(5):1779-93. PubMed ID: 26833694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CONSTANCY OF POPULATION PARAMETERS FOR LIFE-HISTORY AND FLORAL TRAITS IN RAPHANUS SATIVUS L. II. EFFECTS OF PLANTING DENSITY ON PHENOTYPE AND HERITABILITY ESTIMATES.
    Mazer SJ; Schick CT
    Evolution; 1991 Dec; 45(8):1888-1907. PubMed ID: 28563970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect assortative mating: a multivariate approach to plant flowering schedules.
    Weis AE
    J Evol Biol; 2005 May; 18(3):536-46. PubMed ID: 15842483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Herbivory and natural selection on flowering phenology in wild sunflower, Helianthus annuus.
    Pilson D
    Oecologia; 2000 Jan; 122(1):72-82. PubMed ID: 28307959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of phenological variation in sex expression on female reproductive success in Saxifraga granulata.
    van der Meer S; Jacquemyn H
    Am J Bot; 2015 Dec; 102(12):2116-23. PubMed ID: 26656126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the impact of divergent mating phenology between residents and migrants on the potential for gene flow.
    Bonner C; Sokolov NA; Westover SE; Ho M; Weis AE
    Ecol Evol; 2019 Apr; 9(7):3770-3783. PubMed ID: 31015965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenological variation in fruit characteristics in vertebrate-dispersed plants.
    Eriksson O; Ehrlén J
    Oecologia; 1991 May; 86(4):463-470. PubMed ID: 28313326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assortative mating can help adaptation of flowering time to a changing climate: Insights from a polygenic model.
    Godineau C; Ronce O; Devaux C
    J Evol Biol; 2022 Apr; 35(4):491-508. PubMed ID: 33794053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assortative mating and differential male mating success in an ash hybrid zone population.
    Gérard PR; Klein EK; Austerlitz F; Fernández-Manjarrés JF; Frascaria-Lacoste N
    BMC Evol Biol; 2006 Nov; 6():96. PubMed ID: 17107611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.