BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28313379)

  • 21. Plasticity and selection drive hump-shaped latitudinal patterns of flowering phenology in an invasive intertidal plant.
    Chen X; Liu W; Pennings SC; Zhang Y
    Ecology; 2021 May; 102(5):e03311. PubMed ID: 33586146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in snowmelt date and summer precipitation affect the flowering phenology of Erythronium grandiflorum (glacier lily; Liliaceae).
    Lambert AM; Miller-Rushing AJ; Inouye DW
    Am J Bot; 2010 Sep; 97(9):1431-7. PubMed ID: 21616897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the potential strength and consequences for nonrandom gene flow caused by local adaptation in flowering time.
    Weis AE
    J Evol Biol; 2015 Mar; 28(3):699-714. PubMed ID: 25728931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial selection shifts flowering phenology and other correlated traits in an autotetraploid herb.
    Burgess KS; Etterson JR; Galloway LF
    Heredity (Edinb); 2007 Dec; 99(6):641-8. PubMed ID: 17687248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pollinator-mediated selection on floral display and flowering time in the perennial herb Arabidopsis lyrata.
    Sandring S; Agren J
    Evolution; 2009 May; 63(5):1292-300. PubMed ID: 19154392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flowering plant density and pollinator visitation in Senecio.
    Schmitt J
    Oecologia; 1983 Oct; 60(1):97-102. PubMed ID: 28310540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Directional selection on initial flowering date in Phlox drummondii (Polemoniaceae).
    Kelly MG; Levin DA
    Am J Bot; 2000 Mar; 87(3):382-91. PubMed ID: 10718999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of flowering phenology on pollen flow distance and the consequences for spatial genetic structure within a population of Primula sieboldii (Primulaceae).
    Kitamoto N; Ueno S; Takenaka A; Tsumura Y; Washitani I; Ohsawa R
    Am J Bot; 2006 Feb; 93(2):226-33. PubMed ID: 21646183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for stabilising selection acting on flowering time in Arum maculatum (Araceae): the influence of phylogeny on adaptation.
    Ollerton J; Diaz A
    Oecologia; 1999 May; 119(3):340-348. PubMed ID: 28307756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate change alters reproductive isolation and potential gene flow in an annual plant.
    Franks SJ; Weis AE
    Evol Appl; 2009 Nov; 2(4):481-8. PubMed ID: 25567893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flowering phenology, display size, and fruit set in an understory dioecious shrub, Aucuba japonica (Cornaceae).
    Abe T
    Am J Bot; 2001 Mar; 88(3):455-61. PubMed ID: 11250823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vulnerability and determinants of reproductive success in the narrow endemic Antirrhinum microphyllum (Scrophulariaceae).
    Torres E; Iriondo JM; Pérez C
    Am J Bot; 2002 Jul; 89(7):1171-9. PubMed ID: 21665717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response to joint selection on germination and flowering phenology depends on the direction of selection.
    Galloway LF; Watson RHB; Prendeville HR
    Ecol Evol; 2018 Aug; 8(15):7688-7696. PubMed ID: 30151182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Consequences of variation in flowering phenology for seed head herbivory and reproductive success in Erigeron glaucus (Compositae).
    English-Loeb GM; Karban R
    Oecologia; 1992 Apr; 89(4):588-595. PubMed ID: 28311892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming.
    Kopp CW; Cleland EE
    PLoS One; 2015; 10(9):e0139029. PubMed ID: 26402617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of floral display and plant abundance on fruit production of Ryncholaelia glauca (Orchidaceae).
    Flores-Palacios A; García-Franco JG
    Rev Biol Trop; 2003 Mar; 51(1):71-8. PubMed ID: 15162682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Incipient allochronic speciation due to non-selective assortative mating by flowering time, mutation and genetic drift.
    Devaux C; Lande R
    Proc Biol Sci; 2008 Dec; 275(1652):2723-32. PubMed ID: 18700202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of apical meristem mining on plant fitness, architecture, and flowering phenology in Cirsium altissimum (Asteraceae).
    Adhikari S; Russell FL
    Am J Bot; 2014 Dec; 101(12):2079-87. PubMed ID: 25480705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flowering Phenology and Gender Variation in Pennisetum typhoides.
    Sandmeier M; Dajoz I
    Int J Plant Sci; 2000 Jan; 161(1):81-87. PubMed ID: 10648197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EFFECTIVE POPULATION SIZE AND GENETIC DRIFT IN TRISTYLOUS EICHHORNIA PANICULATA (PONTEDERIACEAE).
    Husband BC; Barrett SCH
    Evolution; 1992 Dec; 46(6):1875-1890. PubMed ID: 28567770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.