These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28313409)

  • 21. Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite.
    Walzer A; Schausberger P
    Anim Behav; 2012 Dec; 84(6):1411-1417. PubMed ID: 23264692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How to analyse prey preference when prey density varies? A new method to discriminate between effects of gut fullness and prey type composition.
    Sabelis MW
    Oecologia; 1990 Mar; 82(3):289-298. PubMed ID: 28312701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Trichomes and spider-mite webbing protect predatory mite eggs from intraguild predation.
    Roda A; Nyrop J; Dicke M; English-Loeb G
    Oecologia; 2000 Nov; 125(3):428-435. PubMed ID: 28547338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Small scale spatial heterogeneity influences predation success in an unexpected way: Model experiments on the functional response of predatory mites (Acarina).
    Kaiser H
    Oecologia; 1983 Feb; 56(2-3):249-256. PubMed ID: 28310202
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amblyseius andersoni Chant (Acari: Phytoseiidae), a successful predatory mite on Rosa spp.
    van der Linden A
    Commun Agric Appl Biol Sci; 2004; 69(3):157-63. PubMed ID: 15759407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reproducing during Heat Waves: Influence of Juvenile and Adult Environment on Fecundity of a Pest Mite and Its Predator.
    Tscholl T; Nachman G; Spangl B; Serve HC; Walzer A
    Biology (Basel); 2023 Apr; 12(4):. PubMed ID: 37106755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Foraging on and consumption of two species of papaya pest mites, Tetranychus kanzawai and Panonychus citri (Acari: Tetranychidae), by Mallada basalis (Neuroptera: Chrysopidae).
    Cheng LL; Nechols JR; Margolies DC; Campbell JF; Yang PS; Chen CC; Lu CT
    Environ Entomol; 2009 Jun; 38(3):715-22. PubMed ID: 19508780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Consumption rate, functional response and preference of the predaceous mite Iphiseius degenerans to Tetranychus urticae and Eutetranychus orientalis.
    Fantinou AA; Baxevani A; Drizou F; Labropoulos P; Perdikis D; Papadoulis G
    Exp Appl Acarol; 2012 Oct; 58(2):133-44. PubMed ID: 22527836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disentangling mite predator-prey relationships by multiplex PCR.
    Pérez-Sayas C; Pina T; Gómez-Martínez MA; Camañes G; Ibáñez-Gual MV; Jaques JA; Hurtado MA
    Mol Ecol Resour; 2015 Nov; 15(6):1330-45. PubMed ID: 25824504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mite predator responses to prey and predator-emitted stimuli.
    Hislop RG; Prokopy RJ
    J Chem Ecol; 1981 Sep; 7(5):895-904. PubMed ID: 24420760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implications of Temperature and Prey Density on Predatory Mite
    Elmoghazy MME; Elsherbini DMA; Mashlawi AM; Ibrahim AM; El-Mansi AA; El-Sherbiny M
    Insects; 2024 Jun; 15(6):. PubMed ID: 38921159
    [No Abstract]   [Full Text] [Related]  

  • 32. A functional response model of a predator population foraging in a patchy habitat.
    Nachman G
    J Anim Ecol; 2006 Jul; 75(4):948-58. PubMed ID: 17009758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predation and searching efficiency of a ladybird beetle, Coccinella septempunctata Linnaeus in laboratory environment.
    Omkar ; Srivastava S
    Indian J Exp Biol; 2003 Jan; 41(1):82-4. PubMed ID: 15267141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scaling the effects of predation and disturbance in a patchy environment.
    Lancaster J
    Oecologia; 1996 Aug; 107(3):321-331. PubMed ID: 28307260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does prey preference change as a result of prey species being presented together? Analysis of prey selection by the predatory mite Typhlodromus pyri (Acarina: Phytoseiidae).
    Dicke M; Sabelis MW; van den Berg H
    Oecologia; 1989 Nov; 81(3):302-309. PubMed ID: 28311180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic variation in foraging traits among inbred lines of a predatory mite.
    Jia F; Margolies DC; Boyer JE; Charlton RE
    Heredity (Edinb); 2002 Nov; 89(5):371-9. PubMed ID: 12399996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Predation of Typhlodromus bambusae Ehara on Sehizotetranychus bambsae].
    Liu H; Zhao Z; Wang J; Wu S
    Ying Yong Sheng Tai Xue Bao; 2006 Feb; 17(2):280-4. PubMed ID: 16706054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectrum-specific UV egg damage and dispersal responses in the phytoseiid predatory mite Neoseiulus californicus (Acari: Phytoseiidae).
    Tachi F; Osakabe M
    Environ Entomol; 2014 Jun; 43(3):787-94. PubMed ID: 24690314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prey to predator size ratio influences foraging efficiency of larval Aeshna juncea dragonflies.
    Hirvonen H; Ranta E
    Oecologia; 1996 May; 106(3):407-415. PubMed ID: 28307329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of density dependent migrations on the dynamics of a predator prey model.
    Mchich R; Bergam A; Raïssi N
    Acta Biotheor; 2005; 53(4):331-40. PubMed ID: 16583273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.