These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 28313461)

  • 1. The influence of pH on concentrations of protein and phenolics and resource quality of decomposing floating leaf material of Nymphaea alba L. (Nymphaeaceae) for the detritivore Asellus aquaticus (L.).
    Kok CJ; Hof CH; Lenssen JP; van der Velde G
    Oecologia; 1992 Aug; 91(2):229-234. PubMed ID: 28313461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant traits and environment: floating leaf blade production and turnover of waterlilies.
    Klok PF; van der Velde G
    PeerJ; 2017; 5():e3212. PubMed ID: 28462025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of selected water quality parameters on the decay rate and exoenzymatic activity of detritus of Nymphaea alba L. floating leaf blades in laboratory experiments.
    Kok CJ; Van der Velde G
    Oecologia; 1991 Nov; 88(3):311-316. PubMed ID: 28313790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial decomposition of floating leaf blades of waterlilies: causes, damage types and impacts.
    Klok PF; van der Velde G
    PeerJ; 2019; 7():e7158. PubMed ID: 31275754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: feeding strategies.
    Graça MA; Maltby L; Calow P
    Oecologia; 1993 Feb; 93(1):139-144. PubMed ID: 28313786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenolic content of daylight-exposed and shaded floating leaves of water lilies (Nymphaeaceae) in relation to infection by fungi.
    Vergeer LH; van der Velde G
    Oecologia; 1997 Nov; 112(4):481-484. PubMed ID: 28307624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus : II. Effects on growth, reproduction and physiology.
    Graça MA; Maltby L; Calow P
    Oecologia; 1993 Dec; 96(3):304-309. PubMed ID: 28313643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure pathway-dependent effects of the fungicide epoxiconazole on a decomposer-detritivore system.
    Feckler A; Goedkoop W; Zubrod JP; Schulz R; Bundschuh M
    Sci Total Environ; 2016 Nov; 571():992-1000. PubMed ID: 27450951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pH, humic substances and animal interactions on survival and physiological status of Asellus aquaticus L. and Gammarus pulex (L.) : A field experiment.
    Hargeby A
    Oecologia; 1990 Mar; 82(3):348-354. PubMed ID: 28312710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenolic and mineral content of leaves influences decomposition in European forest ecosystems.
    Nicolai V
    Oecologia; 1988 May; 75(4):575-579. PubMed ID: 28312433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: hepatoprotective, antioxidant and anti-inflammatory activity.
    Bakr RO; El-Naa MM; Zaghloul SS; Omar MM
    BMC Complement Altern Med; 2017 Jan; 17(1):52. PubMed ID: 28095910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenolics, nutrition and insect herbivory in some garrigue and maquis plant species.
    Glyphis JP; Puttick GM
    Oecologia; 1989 Feb; 78(2):259-263. PubMed ID: 28312367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resource-mediated effects of stream pollution on food absorption of Asellus aquaticus (L.) populations.
    Basset A
    Oecologia; 1993 Mar; 93(3):315-321. PubMed ID: 28313429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen, phenolic acids, and other feeding cues for salt marsh detritivores.
    Valiela I; Rietsma CS
    Oecologia; 1984 Aug; 63(3):350-356. PubMed ID: 28311210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis.
    Du Laing G; Van Ryckegem G; Tack FM; Verloo MG
    Chemosphere; 2006 Jun; 63(11):1815-23. PubMed ID: 16330074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Leaf litter decomposition and nutrient release of different stand types in a shelter belt in Xinjiang arid area].
    Yang YH; Zheng L; Duan YZ
    Ying Yong Sheng Tai Xue Bao; 2011 Jun; 22(6):1389-94. PubMed ID: 21941735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation in defence strategies in two species of the genus Beilschmiedia under differing soil nutrient and rainfall conditions.
    Simon J; Miller RE; Woodrow IE
    Plant Biol (Stuttg); 2007 Jan; 9(1):152-7. PubMed ID: 17048139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feeding preferences and performance of an aquatic lepidopteran on macrophytes: plant hosts as food and habitat.
    Dorn NJ; Cronin G; Lodge DM
    Oecologia; 2001 Aug; 128(3):406-415. PubMed ID: 24549910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.