These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28313475)
1. Seasonal variation in leaf chemistry of the coast live oak Quercus agrifolia and implications for the California oak moth Phryganidia californica. Mauffette Y; Oechel WC Oecologia; 1989 Jun; 79(4):439-445. PubMed ID: 28313475 [TBL] [Abstract][Full Text] [Related]
2. Herbivory and the cycling of nitrogen and phosphorus in isolated California oak trees. Hollinger DY Oecologia; 1986 Sep; 70(2):291-297. PubMed ID: 28311672 [TBL] [Abstract][Full Text] [Related]
3. Utilization of evergreen and decidous oaks by the Californian oak moth Phryganidia californica. Puttick GM Oecologia; 1986 Mar; 68(4):589-594. PubMed ID: 28311717 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of Systemic Insecticides for Control of the Invasive Goldspotted Oak Borer (Coleoptera: Buprestidae) in California. Coleman TW; Smith SL; Jones MI; Graves AD; Strom BL J Econ Entomol; 2017 Oct; 110(5):2129-2139. PubMed ID: 28981680 [TBL] [Abstract][Full Text] [Related]
5. Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak (Quercus agrifolia) decline in southern California. Lynch SC; Eskalen A; Zambino PJ; Mayorquin JS; Wang DH Mycologia; 2013; 105(1):125-40. PubMed ID: 23074176 [TBL] [Abstract][Full Text] [Related]
6. Oak genotype and phenolic compounds differently affect the performance of two insect herbivores with contrasting diet breadth. Damestoy T; Brachi B; Moreira X; Jactel H; Plomion C; Castagneyrol B Tree Physiol; 2019 Apr; 39(4):615-627. PubMed ID: 30668790 [TBL] [Abstract][Full Text] [Related]
7. Species-specific responses drive browsing impacts on physiological and functional traits in Quercus agrifolia and Umbellularia californica. Leonard HE; Ciambrone M; Pittermann J PLoS One; 2024; 19(7):e0287160. PubMed ID: 39047008 [TBL] [Abstract][Full Text] [Related]
8. Complete Chloroplast Genome of Topotype Material of the Coast Live Oak Garcia AN; Ramos JH; Mendoza AG; Muhrram A; Vidauri JM; Hughey JR; Microbiol Resour Announc; 2022 Apr; 11(4):e0000422. PubMed ID: 35254126 [TBL] [Abstract][Full Text] [Related]
9. Seasonal variation of leaf wax n-alkane production and δ(2)H values from the evergreen oak tree, Quercus agrifolia. Sachse D; Dawson TE; Kahmen A Isotopes Environ Health Stud; 2015; 51(1):124-42. PubMed ID: 25704898 [TBL] [Abstract][Full Text] [Related]
10. Specific polyphenols and tannins are associated with defense against insect herbivores in the tropical oak Quercus oleoides. Moctezuma C; Hammerbacher A; Heil M; Gershenzon J; Méndez-Alonzo R; Oyama K J Chem Ecol; 2014 May; 40(5):458-67. PubMed ID: 24809533 [TBL] [Abstract][Full Text] [Related]
11. Adaptation to oak and other fibrous, phenolic-rich foliage by a small mammal, Neotoma fuscipes. Atsatt PR; Ingram T Oecologia; 1983 Oct; 60(1):135-142. PubMed ID: 28310547 [TBL] [Abstract][Full Text] [Related]
12. Biotic and abiotic factors associated with altitudinal variation in plant traits and herbivory in a dominant oak species. Abdala-Roberts L; Rasmann S; Berny-Mier Y Terán JC; Covelo F; Glauser G; Moreira X Am J Bot; 2016 Dec; 103(12):2070-2078. PubMed ID: 27965243 [TBL] [Abstract][Full Text] [Related]
13. Parallel increases in insect herbivory and defenses with increasing elevation for both saplings and adult trees of oak (Quercus) species. Galmán A; Abdala-Roberts L; Covelo F; Rasmann S; Moreira X Am J Bot; 2019 Dec; 106(12):1558-1565. PubMed ID: 31724166 [TBL] [Abstract][Full Text] [Related]
14. Leaf habit does not determine the investment in both physical and chemical defences and pair-wise correlations between these defensive traits. Moreira X; Pearse IS Plant Biol (Stuttg); 2017 May; 19(3):354-359. PubMed ID: 28008702 [TBL] [Abstract][Full Text] [Related]
15. Molecular differentiation and diversity among the California red oaks (Fagaceae; Quercus section Lobatae). Dodd RS; Kashani N Theor Appl Genet; 2003 Sep; 107(5):884-92. PubMed ID: 12761621 [TBL] [Abstract][Full Text] [Related]
16. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. Salminen JP; Roslin T; Karonen M; Sinkkonen J; Pihlaja K; Pulkkinen P J Chem Ecol; 2004 Sep; 30(9):1693-711. PubMed ID: 15586669 [TBL] [Abstract][Full Text] [Related]
17. Effects of cattle management on oak regeneration in northern Californian Mediterranean oak woodlands. López-Sánchez A; Schroeder J; Roig S; Sobral M; Dirzo R PLoS One; 2014; 9(8):e105472. PubMed ID: 25126939 [TBL] [Abstract][Full Text] [Related]
18. Tannin assays in ecological studies: Lack of correlation between phenolics, proanthocyanidins and protein-precipitating constituents in mature foliage of six oak species. Martin JS; Martin MM Oecologia; 1982 Aug; 54(2):205-211. PubMed ID: 28311430 [TBL] [Abstract][Full Text] [Related]