These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28313504)

  • 1. Influence of solar radiation and leaf angle on leaf xanthophyll concentrations in mangroves.
    Lovelock CE; Clough BF
    Oecologia; 1992 Oct; 91(4):518-525. PubMed ID: 28313504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf Xanthophyll content and composition in sun and shade determined by HPLC.
    Thayer SS; Björkman O
    Photosynth Res; 1990 Mar; 23(3):331-43. PubMed ID: 24419657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Both xanthophyll cycle-dependent thermal dissipation and the antioxidant system are up-regulated in grape (Vitis labrusca L cv Concord) leaves in response to N limitation.
    Chen LS; Cheng L
    J Exp Bot; 2003 Sep; 54(390):2165-75. PubMed ID: 12885856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy.
    Mänd P; Hallik L; Peñuelas J; Kull O
    Tree Physiol; 2013 Feb; 33(2):202-10. PubMed ID: 23185067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xanthophyll-cycle pigments and photosynthetic capacity in tropical forest species: a comparative field study on canopy, gap and understory plants.
    Königer M; Harris GC; Virgo A; Winter K
    Oecologia; 1995 Nov; 104(3):280-290. PubMed ID: 28307583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves.
    Cheng L
    J Exp Bot; 2003 Jan; 54(381):385-93. PubMed ID: 12493867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Photosynthetic characteristics and photoprotective mechanisms during leaf development of soybean plants grown in the field].
    Jiang CD; Gao HY; Zou Q; Jiang GM
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2004 Aug; 30(4):428-34. PubMed ID: 15627692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf orientation and the response of the xanthophyll cycle to incident light.
    Adams WW; Volk M; Hoehn A; Demmig-Adams B
    Oecologia; 1992 Jun; 90(3):404-410. PubMed ID: 28313528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L.
    Bilger W; Björkman O
    Planta; 1991 May; 184(2):226-34. PubMed ID: 24194074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves.
    Chen LS; Qi YP; Liu XH
    Ann Bot; 2005 Jul; 96(1):35-41. PubMed ID: 15829508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of light acclimation during and after foliage expansion on photosynthesis ofAbies amabilis foliage within the canopy.
    Brooks JR; Sprugel DG; Hinckley TM
    Oecologia; 1996 Mar; 107(1):21-32. PubMed ID: 28307188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels.
    Gamon JA; Serrano L; Surfus JS
    Oecologia; 1997 Nov; 112(4):492-501. PubMed ID: 28307626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The xanthophyll cycle and energy dissipation in differently oriented faces of the cactus Opuntia macrorhiza.
    Barker DH; Adams Iii WW
    Oecologia; 1997 Feb; 109(3):353-361. PubMed ID: 28307531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xanthophyll cycle components and capacity for non-radiative energy dissipation in sun and shade leaves ofLigustrum ovalifolium exposed to conditions limiting photosynthesis.
    Brugnoli E; Cona A; Lauteri M
    Photosynth Res; 1994 Sep; 41(3):451-63. PubMed ID: 24310159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of foliar photosynthetic electron transport, pigment stoichiometry, and stomatal conductance to interacting environmental factors in a mixed species forest canopy.
    Niinemets Ü; Bilger W; Kull O; Tenhunen JD
    Tree Physiol; 1999 Nov; 19(13):839-852. PubMed ID: 10562401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species.
    Hughes NM; Burkey KO; Cavender-Bares J; Smith WK
    J Exp Bot; 2012 Mar; 63(5):1895-905. PubMed ID: 22162871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of the effects of intrathylakoid pH and xanthophyll cycle pigments on chlorophyll a fluorescence lifetime distributions and intensity in thylakoids.
    Gilmore AM; Shinkarev VP; Hazlett TL; Govindjee G
    Biochemistry; 1998 Sep; 37(39):13582-93. PubMed ID: 9753445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence.
    Dai J; Gao H; Dai Y; Zou Q
    Plant Biol (Stuttg); 2004; 6(2):171-7. PubMed ID: 15045668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyponastic leaf growth decreases the photoprotective demand, prevents damage to photosystem II and delays leaf senescence in Salvia broussonetii plants.
    Abreu ME; Munné-Bosch S
    Physiol Plant; 2008 Oct; 134(2):369-79. PubMed ID: 18533002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and accumulation of ultraviolet-radiation-absorbing compounds in leaves of tropical mangroves.
    Lovelock CE; Clough BF; Woodrow IE
    Planta; 1992 Sep; 188(2):143-54. PubMed ID: 24178250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.