These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28313707)

  • 1. Fungal biomass associated with decaying leaf litter in a stream.
    Gessner MO; Schwoerbel J
    Oecologia; 1991 Sep; 87(4):602-603. PubMed ID: 28313707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The estimated impact of fungi on nutrient dynamics during decomposition of Phragmites australis leaf sheaths and stems.
    Van Ryckegem G; Van Driessche G; Van Beeumen JJ; Verbeken A
    Microb Ecol; 2006 Oct; 52(3):564-74. PubMed ID: 17006744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river.
    Pascoal C; Cássio F
    Appl Environ Microbiol; 2004 Sep; 70(9):5266-73. PubMed ID: 15345409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial colonization, nutrient supply, and fungal activity on leaves decaying in streams.
    Sridhar KR; Bärlocher F
    Appl Environ Microbiol; 2000 Mar; 66(3):1114-9. PubMed ID: 10698779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungal growth, production, and sporulation during leaf decomposition in two streams.
    Suberkropp K
    Appl Environ Microbiol; 2001 Nov; 67(11):5063-8. PubMed ID: 11679327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungi on leaf blades of Phragmites australis in a brackish tidal marsh: diversity, succession, and leaf decomposition.
    Van Ryckegem G; Gessner MO; Verbeken A
    Microb Ecol; 2007 May; 53(4):600-11. PubMed ID: 17334859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf litter decomposition in Torna stream before and after a red mud disaster.
    Kucserka T; Karádi-Kovács K; Vass M; Selmeczy GB; Hubai KE; Üveges V; Kacsala I; Törő N; Padisák J
    Acta Biol Hung; 2014 Mar; 65(1):96-106. PubMed ID: 24561898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of culture conditions on ergosterol as an indicator of biomass in the aquatic hyphomycetes.
    Charcosset JY; Chauvet E
    Appl Environ Microbiol; 2001 May; 67(5):2051-5. PubMed ID: 11319080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ergosterol-to-Biomass Conversion Factors for Aquatic Hyphomycetes.
    Gessner MO; Chauvet E
    Appl Environ Microbiol; 1993 Feb; 59(2):502-7. PubMed ID: 16348874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invertebrates, Fungal Biomass, and Leaf Breakdown in Pools and Riffles of Neotropical Streams.
    Tavares Martins R; Souza da Silveira L; Pereira Lopes M; Gama Alves R
    J Insect Sci; 2017 Jan; 17(1):. PubMed ID: 28423423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aquatic hyphomycete strains from metal-contaminated and reference streams might respond differently to future increase in temperature.
    Ferreira V; Gonçalves AL; Canhoto C
    Mycologia; 2012; 104(3):613-22. PubMed ID: 22123653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian cerrado: a 1-year study.
    Sales MA; Gonçalves JF; Dahora JS; Medeiros AO
    Microb Ecol; 2015 Jan; 69(1):84-94. PubMed ID: 25096988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pellet size affects mycelial ergosterol content in aquatic hyphomycetes.
    Raviraja NS; Nikolcheva LG; Bärlocher F
    Mycologia; 2004; 96(2):388-92. PubMed ID: 21148860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixtures of zinc and phosphate affect leaf litter decomposition by aquatic fungi in streams.
    Fernandes I; Duarte S; Cássio F; Pascoal C
    Sci Total Environ; 2009 Jul; 407(14):4283-8. PubMed ID: 19411090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tropical stream microcosms of isolated fungal species suggest nutrient enrichment does not accelerate decomposition but might inhibit fungal biomass production.
    Camelo FRB; Tonin AM; Salgueiro L; Sena G; Braga I; Medeiros AO; Gonçalves Júnior JF
    FEMS Microbiol Lett; 2022 Dec; 369(1):. PubMed ID: 36416839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of zinc on leaf decomposition by fungi in streams: studies in microcosms.
    Duarte S; Pascoal C; Cássio F
    Microb Ecol; 2004 Oct; 48(3):366-74. PubMed ID: 15692857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decomposition and CO2 Evolution from Standing Litter of the Emergent Macrophyte Erianthus giganteus.
    Kuehn KA; Gessner MO; Wetzel RG; Suberkropp K
    Microb Ecol; 1999 Jul; 38(1):50-57. PubMed ID: 10384009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of fungal activities on wood and leaf litter in unaltered and nutrient-enriched headwater streams.
    Gulis V; Suberkropp K; Rosemond AD
    Appl Environ Microbiol; 2008 Feb; 74(4):1094-101. PubMed ID: 18083884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.