These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28313730)

  • 1. Oxygen loss from Spartina alterniflora and its relationship to salt marsh oxygen balance.
    Howes BL; Teal JM
    Oecologia; 1994 May; 97(4):431-438. PubMed ID: 28313730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lacunal allocation and gas transport capacity in the salt marsh grass Spartina alterniflora.
    Arenovski AL; Howes BL
    Oecologia; 1992 Jun; 90(3):316-322. PubMed ID: 28313517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the Spartina alterniflora Root-Rhizome System on Salt Marsh Soil Denitrifying Bacteria.
    Sherr BF; Payne WJ
    Appl Environ Microbiol; 1978 Apr; 35(4):724-9. PubMed ID: 16345288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsurface aeration of tidal wetland soils: Root-system structure and aerenchyma connectivity in Spartina (Poaceae).
    Granse D; Titschack J; Ainouche M; Jensen K; Koop-Jakobsen K
    Sci Total Environ; 2022 Jan; 802():149771. PubMed ID: 34525732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The core root microbiome of Spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in Georgia salt marshes, USA.
    Rolando JL; Kolton M; Song T; Kostka JE
    Microbiome; 2022 Mar; 10(1):37. PubMed ID: 35227326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal patterns of daily net photosynthesis, transpiration and net primary productivity of Juncus roemerianus and Spartina alterniflora in a Georgia salt marsh.
    Giurgevich JR; Dunn EL
    Oecologia; 1982 Jan; 52(3):404-410. PubMed ID: 28310403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a salt marsh on Skidaway Island, Georgia, USA.
    Kolton M; Rolando JL; Kostka JE
    FEMS Microbiol Ecol; 2020 Apr; 96(4):. PubMed ID: 32227167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-Sediment Interactions in Salt Marshes - An Optode Imaging Study of O
    Koop-Jakobsen K; Mueller P; Meier RJ; Liebsch G; Jensen K
    Front Plant Sci; 2018; 9():541. PubMed ID: 29774037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong associations between plant genotypes and bacterial communities in a natural salt marsh.
    Zogg GP; Travis SE; Brazeau DA
    Ecol Evol; 2018 May; 8(9):4721-4730. PubMed ID: 29760911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments.
    Thomas F; Giblin AE; Cardon ZG; Sievert SM
    Front Microbiol; 2014; 5():309. PubMed ID: 25009538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and biochemical responses of the salt-marsh plant Spartina alterniflora to long-term wave exposure.
    Shao D; Zhou W; Bouma TJ; Asaeda T; Wang ZB; Liu X; Sun T; Cui B
    Ann Bot; 2020 Feb; 125(2):291-300. PubMed ID: 31120520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey of sediment oxygenation in rhizospheres of the saltmarsh grass - Spartina anglica.
    Koop-Jakobsen K; Fischer J; Wenzhöfer F
    Sci Total Environ; 2017 Jul; 589():191-199. PubMed ID: 28262356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.
    Chen Y; Chen G; Ye Y
    Sci Total Environ; 2015 Sep; 526():19-28. PubMed ID: 25918889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between nitrogen-fixing sulfate reducers and fermenters in salt marsh sediments and roots of Spartina alterniflora.
    Gandy EL; Yoch DC
    Appl Environ Microbiol; 1988 Aug; 54(8):2031-6. PubMed ID: 3178210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora.
    Zheng Y; Hou L; Liu M; Yin G; Gao J; Jiang X; Lin X; Li X; Yu C; Wang R
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8203-12. PubMed ID: 27225476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fluctuating rhizosphere redox potential on carbon assimilation ofSpartina alterniflora.
    Pezeshki SR; Delaune RD; Patrick WH
    Oecologia; 1989 Mar; 80(1):132-5. PubMed ID: 23494356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient.
    Vasquez EA; Glenn EP; Guntenspergen GR; Brown JJ; Nelson SG
    Am J Bot; 2006 Dec; 93(12):1784-90. PubMed ID: 21642124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of Nitrogen Fixation Activity in Tall and Short Spartina alterniflora Salt Marsh Soils.
    Hanson RB
    Appl Environ Microbiol; 1977 Mar; 33(3):596-602. PubMed ID: 16345213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enumeration and Localization of N(2)-Fixing Bacteria Associated with Roots of Spartina alterniflora Loisel.
    McClung CR; van Berkum P; Davis RE; Sloger C
    Appl Environ Microbiol; 1983 Jun; 45(6):1914-20. PubMed ID: 16346321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.