BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28313857)

  • 41. Dynamic stomatal behavior and its role in carbon gain during lightflecks of a gap phase and an understory Piper species acclimated to high and low light.
    Tinoco-Ojanguren C; Pearcy RW
    Oecologia; 1992 Nov; 92(2):222-228. PubMed ID: 28313055
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of light quantity and quality during development on the photosynthetic characteristics of six Australian rainforest tree species.
    Turnbull MH
    Oecologia; 1991 Jun; 87(1):110-117. PubMed ID: 28313360
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The contribution of dynamic changes in photosynthesis to shade tolerance of two conifer species.
    Ma Z; Behling S; Ford ED
    Tree Physiol; 2014 Jul; 34(7):730-43. PubMed ID: 25070983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Patchy stomatal behavior during midday depression of leaf CO₂ exchange in tropical trees.
    Kamakura M; Kosugi Y; Takanashi S; Matsumoto K; Okumura M; Philip E
    Tree Physiol; 2011 Feb; 31(2):160-8. PubMed ID: 21383025
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps.
    Montgomery R; Chazdon R
    Oecologia; 2002 Apr; 131(2):165-174. PubMed ID: 28547683
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species.
    Pattison RR; Goldstein G; Ares A
    Oecologia; 1998 Dec; 117(4):449-459. PubMed ID: 28307669
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stomatal dynamics and its importance to carbon gain in two rainforest Piper species : I. VPD effects on the transient stomatal response to lightflecks.
    Tinoco-Ojanguren C; Pearcy RW
    Oecologia; 1993 Jun; 94(3):388-394. PubMed ID: 28313676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Photosynthetic responses to light variation in rainforest species : II. Carbon gain and photosynthetic efficiency during lightflecks.
    Chazdon RL; Pearcy RW
    Oecologia; 1986 Jul; 69(4):524-531. PubMed ID: 28311611
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron transport efficiency at opposite leaf sides: effect of vertical distribution of leaf angle, structure, chlorophyll content and species in a forest canopy.
    Mänd P; Hallik L; Peñuelas J; Kull O
    Tree Physiol; 2013 Feb; 33(2):202-10. PubMed ID: 23185067
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of environmental and plant factors on canopy photosynthesis and transpiration of apple trees.
    Giuliani R; Nerozzi F; Magnanini E; Corelli-Grappadelli L
    Tree Physiol; 1997 Oct; 17(10):637-45. PubMed ID: 14759903
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Field water relations of a wet-tropical forest tree species, Pentaclethra macroloba (Mimosaceae).
    Oberbauer SF; Strain BR; Riechers GH
    Oecologia; 1987 Feb; 71(3):369-374. PubMed ID: 28312983
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Shade adaptation and shade tolerance in saplings of three Acer species from eastern North America.
    Lei TT; Lechowicz MJ
    Oecologia; 1990 Sep; 84(2):224-228. PubMed ID: 28312756
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acclimation of shade-developed leaves on saplings exposed to late-season canopy gaps.
    Naidu SL; DeLucia EH
    Tree Physiol; 1997 Jun; 17(6):367-76. PubMed ID: 14759845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plant competition for light analyzed with a multispecies canopy model : II. Influence of photosynthetic characteristics on mixtures of wheat and wild oat.
    Beyschlag W; Barnes PW; Ryel R; Caldwell MM; Flint SD
    Oecologia; 1990 Mar; 82(3):374-380. PubMed ID: 28312714
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acclimation to sudden increase in light favoring an invasive over native trees in subtropical islands, Japan.
    Yamashita N; Ishida A; Kushima H; Tanaka N
    Oecologia; 2000 Nov; 125(3):412-419. PubMed ID: 28547336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Response of photosynthesis and antioxygenic enzymes in seedlings of three tropical forest tree species to different light environments].
    Guo X; Cao K; Xu Z
    Ying Yong Sheng Tai Xue Bao; 2004 Mar; 15(3):377-81. PubMed ID: 15227983
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tree size and light availability increase photochemical instead of non-photochemical capacities of Nothofagus nitida trees growing in an evergreen temperate rain forest.
    Coopman RE; Briceño VF; Corcuera LJ; Reyes-Díaz M; Alvarez D; Sáez K; García-Plazaola JI; Alberdi M; Bravo LA
    Tree Physiol; 2011 Oct; 31(10):1128-41. PubMed ID: 21990025
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative photosynthesis of three gap phase successional tree species.
    Wallace LL; Dunn EL
    Oecologia; 1980 Jan; 45(3):331-340. PubMed ID: 28309559
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Size-related shifts in carbon gain and growth responses to light differ among rainforest evergreens of contrasting shade tolerance.
    Sendall KM; Reich PB; Lusk CH
    Oecologia; 2018 Jul; 187(3):609-623. PubMed ID: 29637296
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.