These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28313975)

  • 1. Large- and small-scale effects of habitat structure on rates of predation: how percent coverage of seagrass affects rates of predation and siphon nipping on an infaunal bivalve.
    Irlandi EA
    Oecologia; 1994 Jul; 98(2):176-183. PubMed ID: 28313975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of animal habitat by large plants: mechanisms by which seagrasses influence clam growth.
    Irlandi EA; Peterson CH
    Oecologia; 1991 Sep; 87(3):307-318. PubMed ID: 28313255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Habitat-former effects on prey behaviour increase predation and non-predation mortality.
    Gribben PE; Wright JT
    J Anim Ecol; 2014 Mar; 83(2):388-96. PubMed ID: 24128198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of foraging behavior of individuals within an ecosystem context: the clam Macoma balthica and interactions between competition and siphon cropping.
    Skilleter GA; Peterson CH
    Oecologia; 1994 Dec; 100(3):268-278. PubMed ID: 28307010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of foraging behavior of individuals within an ecosystem context: the clam Macoma balthica, flow environment, and siphon-cropping fishes.
    Peterson CH; Skilleter GA
    Oecologia; 1994 Dec; 100(3):256-267. PubMed ID: 28307009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Seagrass Effect Turned Upside Down Changes the Prospective of Sea Urchin Survival and Landscape Implications.
    Farina S; Guala I; Oliva S; Piazzi L; Pires da Silva R; Ceccherelli G
    PLoS One; 2016; 11(10):e0164294. PubMed ID: 27783684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the impact of predation by fish on the assemblage structure of fishes associated with seagrass (Heterozostera tasmanica) (Martens ex Ascherson) den Hartog, and unvegetated sand habitats.
    Hindell JS; Jenkins GP; Keough MJ
    J Exp Mar Biol Ecol; 2000 Dec; 255(2):153-174. PubMed ID: 11108849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive effects of habitat selection, food supply and predation on recruitment of an estuarine fish.
    Levin P; Petrik R; Malone J
    Oecologia; 1997 Sep; 112(1):55-63. PubMed ID: 28307376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Habitat fragmentation differentially affects trophic levels and alters behavior in a multi-trophic marine system.
    Rielly-Carroll E; Freestone AL
    Oecologia; 2017 Mar; 183(3):899-908. PubMed ID: 28000022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fish responses to experimental fragmentation of seagrass habitat.
    Macreadie PI; Hindell JS; Jenkins GP; Connolly RM; Keough MJ
    Conserv Biol; 2009 Jun; 23(3):644-52. PubMed ID: 19183213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habitat linkages: the effect of intertidal saltmarshes and adjacent subtidal habitats on abundance, movement, and growth of an estuarine fish.
    Irlandi EA; Crawford MK
    Oecologia; 1997 Apr; 110(2):222-230. PubMed ID: 28307429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Zostera marina on the patterns of spatial distribution of sediments and macrozoobenthos in the boreal lagoon of Furen (Hokkaido, Japan).
    Magni P; Como S; Kamijo A; Montani S
    Mar Environ Res; 2017 Oct; 131():90-102. PubMed ID: 28967507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Threshold effects of habitat fragmentation on fish diversity at landscapes scales.
    Yeager LA; Keller DA; Burns TR; Pool AS; Fodrie FJ
    Ecology; 2016 Aug; 97(8):2157-2166. PubMed ID: 27859191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trait sensitivities to seagrass fragmentation across spatial scales shape benthic community structure.
    Yeager LA; Geyer JK; Fodrie FJ
    J Anim Ecol; 2019 Nov; 88(11):1743-1754. PubMed ID: 31325173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds.
    Lee SY; Fong CW; Wu RS
    J Exp Mar Biol Ecol; 2001 Apr; 259(1):23-50. PubMed ID: 11325375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling the effects of predation and disturbance in a patchy environment.
    Lancaster J
    Oecologia; 1996 Aug; 107(3):321-331. PubMed ID: 28307260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Habitat complexity and benthic predator-prey interactions in Chesapeake Bay.
    Glaspie CN; Seitz RD
    PLoS One; 2018; 13(10):e0205162. PubMed ID: 30289889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predator-prey interactions in a coastal setting: Linking crab feeding rates to small scale distribution of clams.
    Quijón PA
    Mar Environ Res; 2024 Apr; 196():106452. PubMed ID: 38492324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Meiofaunal communities in a tropical seagrass bed and adjacent unvegetated sediments with note on sufficient sample size for determining local diversity indices.
    Liao JX; Yeh HM; Mok HK
    Zool Stud; 2015; 54():e14. PubMed ID: 31966101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a landscape approach in seagrass beds: using macroalgal accumulation to address questions of scale.
    Bell SS; Hall MO; Robbins BD
    Oecologia; 1995 Oct; 104(2):163-168. PubMed ID: 28307353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.