These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28314357)

  • 1. Experimental Study on Thermal Conductivity and Hardness of Cu and Ni Nanoparticle Packed Bed for Thermoelectric Application.
    Lin ZZ; Huang CL; Zhen WK; Feng YH; Zhang XX; Wang G
    Nanoscale Res Lett; 2017 Dec; 12(1):189. PubMed ID: 28314357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-Electric Properties of Cu and Ni Nanoparticles Packed Beds.
    Lin ZZ; Huang CL; Huang Z
    J Nanosci Nanotechnol; 2018 May; 18(5):3413-3418. PubMed ID: 29442846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectrical properties of silicon substrates with nanopores synthesized by metal-assisted chemical etching.
    Li Y; Toan NV; Wang Z; Samat KF; Ono T
    Nanotechnology; 2020 Nov; 31(45):455705. PubMed ID: 32365347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot-Injection Synthesis of Cu-Doped Cu₂ZnSnSe₄ Nanocrystals to Reach Thermoelectric zT of 0.70 at 450°C.
    Chen D; Zhao Y; Chen Y; Wang B; Wang Y; Zhou J; Liang Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24403-8. PubMed ID: 26497358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of thermoelectric properties of La-doped SrTiO
    Ahmed AJ; Nazrul Islam SMK; Hossain R; Kim J; Kim M; Billah M; Hossain MSA; Yamauchi Y; Wang X
    R Soc Open Sci; 2019 Oct; 6(10):190870. PubMed ID: 31824703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistically improving the thermoelectric and mechanical performance for p-type MnGe
    Gao L; Dong X; Zheng S; Li W; Yang X
    Phys Chem Chem Phys; 2022 Apr; 24(16):9247-9255. PubMed ID: 35389392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Dissolution-Derived Nanoporous Design of Impurity-Free Bi
    Lee S; Jung SJ; Park GM; Na MY; Kim KC; Hong J; Lee AS; Baek SH; Kim H; Park TJ; Kim JS; Kim SK
    Small; 2023 Apr; 19(14):e2205202. PubMed ID: 36634999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-State Explosive Reaction for Nanoporous Bulk Thermoelectric Materials.
    Zhao K; Duan H; Raghavendra N; Qiu P; Zeng Y; Zhang W; Yang J; Shi X; Chen L
    Adv Mater; 2017 Nov; 29(42):. PubMed ID: 28961340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural, Thermoelectric and Mechanical Properties of Cu Substituted NaCo
    Perać S; Savić SM; Branković Z; Bernik S; Radojković A; Kojić S; Vasiljević D; Branković G
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General Figures of Merit ZQ for Thermoelectric Generators Under Constant Heat-In Flux Boundary.
    Li H; Wang Y; Zhu K; Han Z; Wu X; Wang S; Zhang W; Liu W
    Adv Sci (Weinh); 2023 Nov; 10(32):e2303695. PubMed ID: 37755131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneously Enhanced Thermoelectric and Mechanical Performance in SnSe-Based Nanocomposites Produced via Sintering SnSe and KCu
    Liu X; Chen Y; Wang H; Liu S; Zhang B; Lu X; Wang G; Han G; Chen X; Zhou X
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2240-2250. PubMed ID: 38172084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting High Thermoelectric Performance of Ni-Doped Cu
    Shen F; Zheng Y; Miao L; Liu C; Gao J; Wang X; Liu P; Yoshida K; Cai H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8385-8391. PubMed ID: 31909970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spark Plasma Sintered Bulk Nanocomposites of Bi
    Du B; Lai X; Liu Q; Liu H; Wu J; Liu J; Zhang Z; Pei Y; Zhao H; Jian J
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31816-31823. PubMed ID: 31436073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Right sizes of nano- and microstructures for high-performance and rigid bulk thermoelectrics.
    Wang H; Bahk JH; Kang C; Hwang J; Kim K; Kim J; Burke P; Bowers JE; Gossard AC; Shakouri A; Kim W
    Proc Natl Acad Sci U S A; 2014 Jul; 111(30):10949-54. PubMed ID: 25028497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Thermoelectric Performance of Tellurium by Alloying with a Small Concentration of Selenium to Decrease Lattice Thermal Conductivity.
    Saparamadu U; Li C; He R; Zhu H; Ren Z; Mao J; Song S; Sun J; Chen S; Zhang Q; Nielsch K; Broido D; Ren Z
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):511-516. PubMed ID: 30525424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured Thermoelectric Films Synthesised by Spark Ablation and Their Oxidation Behaviour.
    van Ginkel HJ; Mitterhuber L; van de Putte MW; Huijben M; Vollebregt S; Zhang G
    Nanomaterials (Basel); 2023 May; 13(11):. PubMed ID: 37299681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Preparation Procedures and Porosity on Thermoelectric Bulk Samples of Cu
    Lohani K; Fanciulli C; Scardi P
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling thermoelectric transport in organic materials.
    Wang D; Shi W; Chen J; Xi J; Shuai Z
    Phys Chem Chem Phys; 2012 Dec; 14(48):16505-20. PubMed ID: 23086525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the thermoelectric figure of merit.
    Goldsmid HJ
    Sci Technol Adv Mater; 2021 Apr; 22(1):280-284. PubMed ID: 33907527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.