These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28314360)

  • 21. Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells.
    Costals ER; Masmitjà G; Almache E; Pusay B; Tiwari K; Saucedo E; Raj CJ; Kim BC; Puigdollers J; Martin I; Voz C; Ortega P
    Mater Adv; 2022 Jan; 3(1):337-345. PubMed ID: 35128416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfur-Enhanced Field-Effect Passivation using (NH
    Kim DW; Song JW; Jin HS; Yoo B; Lee JH; Park TJ
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25140-25146. PubMed ID: 31259511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.
    Nogay G; Stuckelberger J; Wyss P; Jeangros Q; Allebé C; Niquille X; Debrot F; Despeisse M; Haug FJ; Löper P; Ballif C
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35660-35667. PubMed ID: 27959489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-Situ Fabrication of a Self-Aligned Selective Emitter Silicon Solar Cell Using the Gold Top Contacts To Facilitate the Synthesis of a Nanostructured Black Silicon Antireflective Layer Instead of an External Metal Nanoparticle Catalyst.
    Lu YT; Barron AR
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11802-14. PubMed ID: 25967127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of the surface passivation mechanism through an Ag-doped Al-rich film using a solution process.
    Khan F; Baek SH; Kim JH
    Nanoscale; 2016 Jan; 8(2):1007-14. PubMed ID: 26661502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thickness-modulated passivation properties of PEDOT:PSS layers over crystalline silicon wafers in back junction organic/silicon solar cells.
    Zhang L; Wang Z; Lin H; Wang W; Wang J; Zhang H; Sheng J; Wu S; Gao P; Ye J; Yu T
    Nanotechnology; 2019 May; 30(19):195401. PubMed ID: 30673648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanotexturing process on microtextured surfaces of silicon solar cells by SF6/O2 reactive ion etching.
    Ji H; Choi J; Lim G; Parida B; Kim K; Jo JH; Kim HS
    J Nanosci Nanotechnol; 2013 Dec; 13(12):7806-13. PubMed ID: 24266144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al
    Chen HY; Lu HL; Sun L; Ren QH; Zhang H; Ji XM; Liu WJ; Ding SJ; Yang XF; Zhang DW
    Sci Rep; 2016 Dec; 6():38486. PubMed ID: 27924911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Black silicon significantly enhances phosphorus diffusion gettering.
    Pasanen TP; Laine HS; Vähänissi V; Schön J; Savin H
    Sci Rep; 2018 Jan; 8(1):1991. PubMed ID: 29386589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A 12%-efficient upgraded metallurgical grade silicon-organic heterojunction solar cell achieved by a self-purifying process.
    Zhang J; Song T; Shen X; Yu X; Lee ST; Sun B
    ACS Nano; 2014 Nov; 8(11):11369-76. PubMed ID: 25365397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of Al-doped ZnO films grown by atomic layer deposition for silicon nanowire photovoltaic device.
    Oh BY; Han JW; Seo DS; Kim KY; Baek SH; Jang HS; Kim JH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5330-5. PubMed ID: 22966566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells.
    Ziegler J; Haschke J; Käsebier T; Korte L; Sprafke AN; Wehrspohn RB
    Opt Express; 2014 Oct; 22 Suppl 6():A1469-76. PubMed ID: 25607304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dip Coating Passivation of Crystalline Silicon by Lewis Acids.
    Ji W; Zhao Y; Fahad HM; Bullock J; Allen T; Lien DH; De Wolf S; Javey A
    ACS Nano; 2019 Mar; 13(3):3723-3729. PubMed ID: 30830749
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study on the characteristics of amorphous low-K thin film for solar cells.
    Oh T
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3322-5. PubMed ID: 22849116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advanced Passivation Technology and Loss Factor Minimization for High Efficiency Solar Cells.
    Park C; Balaji N; Jung S; Choi J; Ju M; Lee S; Kim J; Bong S; Chung S; Lee YJ; Yi J
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7699-705. PubMed ID: 26726397
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Data of ALD Al
    Huang H; Lv J; Bao Y; Xuan R; Sun S; Sneck S; Li S; Modanese C; Savin H; Wang A; Zhao J
    Data Brief; 2017 Apr; 11():19-26. PubMed ID: 28127578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface Defect Passivation and Reaction of c-Si in H
    Liu HY; Das UK; Birkmire RW
    Langmuir; 2017 Dec; 33(51):14580-14585. PubMed ID: 29198109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-Efficiency Silicon Inverted Pyramid-Based Passivated Emitter and Rear Cells.
    Gao K; Liu Y; Fan Y; Shi L; Zhuang Y; Cui Y; Yuan S; Wan Y; Shen W; Huang Z
    Nanoscale Res Lett; 2020 Aug; 15(1):174. PubMed ID: 32857219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Carrier Generation in Organic-Passivated Black Silicon Solar Cells with Industrially Feasible Processes.
    Zhou X; Wan L; Li H; Yang X; Chen J; Ge K; Yan J; Zhang C; Gao Q; Zhang X; Guo J; Li F; Wang J; Song D; Wang S; Flavel BS; Chen J
    Small; 2023 Mar; 19(10):e2205848. PubMed ID: 36564362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Investigation on a Crystalline-Silicon Solar Cell with Black Silicon Layer at the Rear.
    Zhou ZQ; Hu F; Zhou WJ; Chen HY; Ma L; Zhang C; Lu M
    Nanoscale Res Lett; 2017 Dec; 12(1):623. PubMed ID: 29247301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.