BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28314372)

  • 21. Interaction of L-Phenylalanine with a Phospholipid Monolayer at the Water-Air Interface.
    Griffith EC; Perkins RJ; Telesford DM; Adams EM; Cwiklik L; Allen HC; Roeselová M; Vaida V
    J Phys Chem B; 2015 Jul; 119(29):9038-48. PubMed ID: 25549016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of Temperature on Molecular Adsorption and Transport at Liposome Surfaces Studied by Molecular Dynamics Simulations and Second Harmonic Generation Spectroscopy.
    Hamal P; Subasinghege Don V; Nguyenhuu H; Ranasinghe JC; Nauman JA; McCarley RL; Kumar R; Haber LH
    J Phys Chem B; 2021 Sep; 125(37):10506-10513. PubMed ID: 34495664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding of Short Cationic Peptides (KX)4K to Negatively Charged DPPG Monolayers: Competition between Electrostatic and Hydrophobic Interactions.
    Hädicke A; Blume A
    Langmuir; 2015 Nov; 31(44):12203-14. PubMed ID: 26479457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence for phospholipid microdomain formation in liquid crystalline liposomes reconstituted with Escherichia coli lactose permease.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1997 Mar; 72(3):1247-57. PubMed ID: 9138570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Penetration of milk-derived antimicrobial peptides into phospholipid monolayers as model biomembranes.
    Barzyk W; Rogalska E; Więcław-Czapla K
    Biochem Res Int; 2013; 2013():914540. PubMed ID: 24455264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide.
    Ciumac D; Campbell RA; Xu H; Clifton LA; Hughes AV; Webster JRP; Lu JR
    Colloids Surf B Biointerfaces; 2017 Feb; 150():308-316. PubMed ID: 27863825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mixed DPPC/POPC Monolayers: All-atom Molecular Dynamics Simulations and Langmuir Monolayer Experiments.
    Olżyńska A; Zubek M; Roeselova M; Korchowiec J; Cwiklik L
    Biochim Biophys Acta; 2016 Dec; 1858(12):3120-3130. PubMed ID: 27664500
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy.
    Chen X; Hua W; Huang Z; Allen HC
    J Am Chem Soc; 2010 Aug; 132(32):11336-42. PubMed ID: 20698700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of the cationic peptide bactenecin with mixed phospholipid monolayers at the air-water interface.
    López-Oyama AB; Taboada P; Burboa MG; Rodríguez E; Mosquera V; Valdez MA
    J Colloid Interface Sci; 2011 Jul; 359(1):279-88. PubMed ID: 21501845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exchangeable Mimics of DPPC and DPPG Exhibiting Similar Nearest-Neighbor Interactions in Fluid Bilayers.
    Mukai M; Regen SL
    Langmuir; 2015 Nov; 31(46):12674-8. PubMed ID: 26536166
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Nov; 141(18):18C502. PubMed ID: 25399167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic and infrared analyses of the interaction of chlorpromazine with phospholipid monolayers.
    Hidalgo AA; Pimentel AS; Tabak M; Oliveira ON
    J Phys Chem B; 2006 Oct; 110(39):19637-46. PubMed ID: 17004832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poly(ethylene glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1995 Feb; 68(2):525-35. PubMed ID: 7696506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimicrobial peptide-lipid binding interactions and binding selectivity.
    Lad MD; Birembaut F; Clifton LA; Frazier RA; Webster JR; Green RJ
    Biophys J; 2007 May; 92(10):3575-86. PubMed ID: 17325007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Competition between DPPC and SDS at the air-aqueous interface.
    Harper KL; Allen HC
    Langmuir; 2007 Aug; 23(17):8925-31. PubMed ID: 17629307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular restructuring of water and lipids upon the interaction of DNA with lipid monolayers.
    Campen RK; Ngo TT; Sovago M; Ruysschaert JM; Bonn M
    J Am Chem Soc; 2010 Jun; 132(23):8037-47. PubMed ID: 20486664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of phospholipid on trichosanthin adsorption at the air-water interface.
    Xia XF; Wang F; Sui SF
    Biochim Biophys Acta; 2001 Nov; 1515(1):1-11. PubMed ID: 11597347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the lipid composition of biomimetic monolayers on the structure and orientation of the gp41 tryptophan-rich peptide from HIV-1.
    Matar G; Besson F
    Biochim Biophys Acta; 2011 Oct; 1808(10):2534-43. PubMed ID: 21699883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics simulations of DPPC/CTAB monolayers at the air/water interface.
    Liu B; Hoopes MI; Karttunen M
    J Phys Chem B; 2014 Oct; 118(40):11723-37. PubMed ID: 25222268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of surface charge distribution on the adsorption orientation of proteins to lipid monolayers.
    Tiemeyer S; Paulus M; Tolan M
    Langmuir; 2010 Sep; 26(17):14064-7. PubMed ID: 20707324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.