These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 28314428)
1. Nanostructuring Biomaterials with Specific Activities towards Digestive Enzymes for Controlled Gastrointestinal Absorption of Lipophilic Bioactive Molecules. Joyce P; Whitby CP; Prestidge CA Adv Colloid Interface Sci; 2016 Nov; 237():52-75. PubMed ID: 28314428 [TBL] [Abstract][Full Text] [Related]
2. Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Sarkar A; Zhang S; Holmes M; Ettelaie R Adv Colloid Interface Sci; 2019 Jan; 263():195-211. PubMed ID: 30580767 [TBL] [Abstract][Full Text] [Related]
3. The role of porous nanostructure in controlling lipase-mediated digestion of lipid loaded into silica particles. Joyce P; Tan A; Whitby CP; Prestidge CA Langmuir; 2014 Mar; 30(10):2779-88. PubMed ID: 24552363 [TBL] [Abstract][Full Text] [Related]
4. Bile salts in digestion and transport of lipids. Macierzanka A; Torcello-Gómez A; Jungnickel C; Maldonado-Valderrama J Adv Colloid Interface Sci; 2019 Dec; 274():102045. PubMed ID: 31689682 [TBL] [Abstract][Full Text] [Related]
5. Engineering intelligent particle-lipid composites that control lipase-mediated digestion. Joyce P; Gustafsson H; Prestidge CA Adv Colloid Interface Sci; 2018 Oct; 260():1-23. PubMed ID: 30119842 [TBL] [Abstract][Full Text] [Related]
6. Impact of gastrointestinal lipolysis on oral lipid-based formulations and bioavailability of lipophilic drugs. Carrière F Biochimie; 2016 Jun; 125():297-305. PubMed ID: 26607242 [TBL] [Abstract][Full Text] [Related]
8. In vitro lipolysis tests on lipid nanoparticles: comparison between lipase/co-lipase and pancreatic extract. Jannin V; Dellera E; Chevrier S; Chavant Y; Voutsinas C; Bonferoni C; Demarne F Drug Dev Ind Pharm; 2015; 41(10):1582-8. PubMed ID: 25342478 [TBL] [Abstract][Full Text] [Related]
9. Nanostructured Montmorillonite Clay for Controlling the Lipase-Mediated Digestion of Medium Chain Triglycerides. Dening TJ; Joyce P; Rao S; Thomas N; Prestidge CA ACS Appl Mater Interfaces; 2016 Dec; 8(48):32732-32742. PubMed ID: 27934188 [TBL] [Abstract][Full Text] [Related]
10. Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Bakala N'Goma JC; Amara S; Dridi K; Jannin V; Carrière F Ther Deliv; 2012 Jan; 3(1):105-24. PubMed ID: 22833936 [TBL] [Abstract][Full Text] [Related]
11. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. Dahan A; Hoffman A J Control Release; 2008 Jul; 129(1):1-10. PubMed ID: 18499294 [TBL] [Abstract][Full Text] [Related]
12. Controlling the enzymatic digestion of lipids using hybrid nanostructured materials. Tan A; Colliat-Dangus P; Whitby CP; Prestidge CA ACS Appl Mater Interfaces; 2014 Sep; 6(17):15363-71. PubMed ID: 25116477 [TBL] [Abstract][Full Text] [Related]
13. In vitro digestion of the self-emulsifying lipid excipient Labrasol(®) by gastrointestinal lipases and influence of its colloidal structure on lipolysis rate. Fernandez S; Jannin V; Chevrier S; Chavant Y; Demarne F; Carrière F Pharm Res; 2013 Dec; 30(12):3077-87. PubMed ID: 23636839 [TBL] [Abstract][Full Text] [Related]
14. Morphological observations on a lipid-based drug delivery system during in vitro digestion. Fatouros DG; Bergenstahl B; Mullertz A Eur J Pharm Sci; 2007 Jun; 31(2):85-94. PubMed ID: 17418543 [TBL] [Abstract][Full Text] [Related]
15. Tableting lipid-based formulations for oral drug delivery: a case study with silica nanoparticle-lipid-mannitol hybrid microparticles. Bremmell KE; Tan A; Martin A; Prestidge CA J Pharm Sci; 2013 Feb; 102(2):684-93. PubMed ID: 23242712 [TBL] [Abstract][Full Text] [Related]
16. Structural development of self nano emulsifying drug delivery systems (SNEDDS) during in vitro lipid digestion monitored by small-angle X-ray scattering. Fatouros DG; Deen GR; Arleth L; Bergenstahl B; Nielsen FS; Pedersen JS; Mullertz A Pharm Res; 2007 Oct; 24(10):1844-53. PubMed ID: 17458683 [TBL] [Abstract][Full Text] [Related]
17. Label-free imaging of lipophilic bioactive molecules during lipid digestion by multiplex coherent anti-Stokes Raman scattering microspectroscopy. Day JP; Rago G; Domke KF; Velikov KP; Bonn M J Am Chem Soc; 2010 Jun; 132(24):8433-9. PubMed ID: 20507119 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions. Li Y; McClements DJ Eur J Pharm Biopharm; 2011 Oct; 79(2):423-31. PubMed ID: 21443951 [TBL] [Abstract][Full Text] [Related]
19. Nanostructured clay particles supplement orlistat action in inhibiting lipid digestion: An in vitro evaluation for the treatment of obesity. Joyce P; Dening TJ; Meola TR; Gustafsson H; Kovalainen M; Prestidge CA Eur J Pharm Sci; 2019 Jul; 135():1-11. PubMed ID: 31067495 [TBL] [Abstract][Full Text] [Related]
20. Silica nanoparticles to control the lipase-mediated digestion of lipid-based oral delivery systems. Tan A; Simovic S; Davey AK; Rades T; Boyd BJ; Prestidge CA Mol Pharm; 2010 Apr; 7(2):522-32. PubMed ID: 20063867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]