BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

542 related articles for article (PubMed ID: 28314725)

  • 1. Lentinula edodes Genome Survey and Postharvest Transcriptome Analysis.
    Sakamoto Y; Nakade K; Sato S; Yoshida K; Miyazaki K; Natsume S; Konno N
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28314725
    [No Abstract]   [Full Text] [Related]  

  • 2. De novo transcriptomic analysis during Lentinula edodes fruiting body growth.
    Wang Y; Zeng X; Liu W
    Gene; 2018 Jan; 641():326-334. PubMed ID: 29066302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An endo-β-1,6-glucanase involved in Lentinula edodes fruiting body autolysis.
    Konno N; Sakamoto Y
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1365-73. PubMed ID: 21523473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lentinan degradation in the Lentinula edodes fruiting body during postharvest preservation is reduced by downregulation of the exo-β-1,3-glucanase EXG2.
    Konno N; Nakade K; Nishitani Y; Mizuno M; Sakamoto Y
    J Agric Food Chem; 2014 Aug; 62(32):8153-7. PubMed ID: 25033107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cataloging and profiling genes expressed in Lentinula edodes fruiting body by massive cDNA pyrosequencing and LongSAGE.
    Chum WW; Kwan HS; Au CH; Kwok IS; Fung YW
    Fungal Genet Biol; 2011 Apr; 48(4):359-69. PubMed ID: 21281728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the post-harvest changes in gene transcription in the gill of the Lentinula edodes fruiting body.
    Sakamoto Y; Nakade K; Sato T
    Curr Genet; 2009 Aug; 55(4):409-23. PubMed ID: 19488757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes.
    Shim D; Park SG; Kim K; Bae W; Lee GW; Ha BS; Ro HS; Kim M; Ryoo R; Rhee SK; Nou IS; Koo CD; Hong CP; Ryu H
    J Biotechnol; 2016 Apr; 223():24-5. PubMed ID: 26924240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulative effects of light and a temperature downshift on transcriptional expressions of developmentally regulated genes in the initial stages of fruiting-body formation of the basidiomycetous mushroom Lentinula edodes.
    Nakazawa T; Miyazaki Y; Kaneko S; Shishido K
    FEMS Microbiol Lett; 2008 Dec; 289(1):67-71. PubMed ID: 19054095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis of abnormal cap and healthy fruiting bodies of the edible mushroom Lentinula edodes.
    Yan D; Gao Q; Rong C; Liu Y; Song S; Yu Q; Zhou K; Liao Y
    Fungal Genet Biol; 2021 Nov; 156():103614. PubMed ID: 34400332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes.
    Song HY; Kim DH; Kim JM
    Sci Rep; 2018 Jun; 8(1):8983. PubMed ID: 29895888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Sequence of the Edible Cultivated Mushroom Lentinula edodes (Shiitake) Reveals Insights into Lignocellulose Degradation.
    Chen L; Gong Y; Cai Y; Liu W; Zhou Y; Xiao Y; Xu Z; Liu Y; Lei X; Wang G; Guo M; Ma X; Bian Y
    PLoS One; 2016; 11(8):e0160336. PubMed ID: 27500531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression and repression of the tyrosinase gene in Lentinula edodes using the pChG vector.
    Sato T; Takahashi M; Hasegawa J; Watanabe H
    J Biosci Bioeng; 2019 Jul; 128(1):1-7. PubMed ID: 30683592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptome analysis identified candidate genes involved in mycelium browning in Lentinula edodes.
    Yoo SI; Lee HY; Markkandan K; Moon S; Ahn YJ; Ji S; Ko J; Kim SJ; Ryu H; Hong CP
    BMC Genomics; 2019 Feb; 20(1):121. PubMed ID: 30736734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Le.MAPK and its interacting partner, Le.DRMIP, in fruiting body development in Lentinula edodes.
    Szeto CY; Leung GS; Kwan HS
    Gene; 2007 May; 393(1-2):87-93. PubMed ID: 17383119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence.
    Sakamoto Y; Watanabe H; Nagai M; Nakade K; Takahashi M; Sato T
    Plant Physiol; 2006 Jun; 141(2):793-801. PubMed ID: 16648221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fruiting-specific Le.flp1 gene, encoding a novel fungal fasciclin-like protein, of the basidiomycetous mushroom Lentinula edodes.
    Miyazaki Y; Kaneko S; Sunagawa M; Shishido K; Yamazaki T; Nakamura M; Babasaki K
    Curr Genet; 2007 Jun; 51(6):367-75. PubMed ID: 17476508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and transcript analysis of two-component histidine kinase gene Le.nik1 in Shiitake mushroom, Lentinula edodes.
    Szeto CY; Wong QW; Leung GS; Kwan HS
    Mycol Res; 2008 Jan; 112(Pt 1):108-16. PubMed ID: 18234485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes.
    Gong WB; Li L; Zhou Y; Bian YB; Kwan HS; Cheung MK; Xiao Y
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5437-52. PubMed ID: 26875873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population genomic analysis uncovers environmental stress-driven selection and adaptation of Lentinula edodes population in China.
    Xiao Y; Cheng X; Liu J; Li C; Nong W; Bian Y; Cheung MK; Kwan HS
    Sci Rep; 2016 Nov; 6():36789. PubMed ID: 27830835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo characterization of Lentinula edodes C(91-3) transcriptome by deep Solexa sequencing.
    Zhong M; Liu B; Wang X; Liu L; Lun Y; Li X; Ning A; Cao J; Huang M
    Biochem Biophys Res Commun; 2013 Feb; 431(1):111-5. PubMed ID: 23266612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.