BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 28314795)

  • 1. Unique Physiological and Transcriptional Shifts under Combinations of Salinity, Drought, and Heat.
    Shaar-Moshe L; Blumwald E; Peleg Z
    Plant Physiol; 2017 May; 174(1):421-434. PubMed ID: 28314795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon.
    Wen F; Wu X; Li T; Jia M; Liu X; Li P; Zhou X; Ji X; Yue X
    PLoS One; 2017; 12(7):e0180352. PubMed ID: 28683139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L.
    Zhu G; Chen G; Zhu J; Zhu Y; Lu X; Li X; Hu Y; Yan Y
    PLoS One; 2015; 10(10):e0139794. PubMed ID: 26444425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular plant responses to combined abiotic stresses put a spotlight on unknown and abundant genes.
    Sewelam N; Brilhaus D; Bräutigam A; Alseekh S; Fernie AR; Maurino VG
    J Exp Bot; 2020 Aug; 71(16):5098-5112. PubMed ID: 32442250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of the Brachypodium distachyon (L.) P. Beauv. Hsp90 gene family reveals molecular evolution and expression profiling under drought and salt stresses.
    Zhang M; Shen Z; Meng G; Lu Y; Wang Y
    PLoS One; 2017; 12(12):e0189187. PubMed ID: 29216330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought.
    Mantri NL; Ford R; Coram TE; Pang EC
    BMC Genomics; 2007 Sep; 8():303. PubMed ID: 17764573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic regulatory networks mediated by microRNAs and transcription factors under drought, heat and salt stresses in Oryza Sativa spp.
    Nigam D; Kumar S; Mishra DC; Rai A; Smita S; Saha A
    Gene; 2015 Jan; 555(2):127-39. PubMed ID: 25445270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant adaptations to the combination of drought and high temperatures.
    Zandalinas SI; Mittler R; Balfagón D; Arbona V; Gómez-Cadenas A
    Physiol Plant; 2018 Jan; 162(1):2-12. PubMed ID: 28042678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome profilling analysis characterized the gene expression patterns responded to combined drought and heat stresses in soybean.
    Wang L; Liu L; Ma Y; Li S; Dong S; Zu W
    Comput Biol Chem; 2018 Dec; 77():413-429. PubMed ID: 30476702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of switchgrass (Panicum virgatum L.) transcriptomes in response to interactive effects of drought and heat stresses.
    Hayford RK; Serba DD; Xie S; Ayyappan V; Thimmapuram J; Saha MC; Wu CH; Kalavacharla VK
    BMC Plant Biol; 2022 Mar; 22(1):107. PubMed ID: 35260072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits.
    Fan Y; Shabala S; Ma Y; Xu R; Zhou M
    BMC Genomics; 2015 Feb; 16(1):43. PubMed ID: 25651931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of CaDSR6 increases tolerance to drought and salt stresses in transgenic Arabidopsis plants.
    Kim EY; Seo YS; Park KY; Kim SJ; Kim WT
    Gene; 2014 Nov; 552(1):146-54. PubMed ID: 25234727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis.
    Cho HY; Lee C; Hwang SG; Park YC; Lim HL; Jang CS
    Gene; 2014 Nov; 552(1):98-105. PubMed ID: 25218040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress.
    Johnson SM; Lim FL; Finkler A; Fromm H; Slabas AR; Knight MR
    BMC Genomics; 2014 Jun; 15(1):456. PubMed ID: 24916767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OsACA6, a P-type IIB Ca²⁺ ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes.
    Huda KM; Banu MS; Garg B; Tula S; Tuteja R; Tuteja N
    Plant J; 2013 Dec; 76(6):997-1015. PubMed ID: 24128296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An osmotin from the resurrection plant Tripogon loliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice.
    Le TTT; Williams B; Mundree SG
    Physiol Plant; 2018 Jan; 162(1):13-34. PubMed ID: 28466470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
    Nejat N; Mantri N
    Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Reference Genes for Quantitative Real-Time PCR in Date Palm (Phoenix dactylifera L.) Subjected to Drought and Salinity.
    V Patankar H; M Assaha DV; Al-Yahyai R; Sunkar R; Yaish MW
    PLoS One; 2016; 11(11):e0166216. PubMed ID: 27824922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Miscanthus genotypes selected for different drought tolerance phenotypes show enhanced tolerance across combinations of salinity and drought treatments.
    Stavridou E; Webster RJ; Robson PRH
    Ann Bot; 2019 Oct; 124(4):653-674. PubMed ID: 31665760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.