BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28315239)

  • 1. [
    Drazic A; Arnesen T
    Methods Mol Biol; 2017; 1574():1-8. PubMed ID: 28315239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using cell lysates to assess N-terminal acetyltransferase activity and impairment.
    Lundekvam M; Arnesen T; McTiernan N
    Methods Enzymol; 2023; 686():29-43. PubMed ID: 37532404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DTNB-Based Quantification of In Vitro Enzymatic N-Terminal Acetyltransferase Activity.
    Foyn H; Thompson PR; Arnesen T
    Methods Mol Biol; 2017; 1574():9-15. PubMed ID: 28315240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Acetylation in Pathogen Virulence and Host Defense: In Vitro Detection of Protein Acetylation by Radiolabeled Acetyl Coenzyme A.
    Schreiber KJ; Lewis JD
    Methods Mol Biol; 2019; 1991():23-32. PubMed ID: 31041759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide CoA conjugates for in situ proteomics profiling of acetyltransferase activities.
    Eirich J; Sindlinger J; Schön S; Schwarzer D; Finkemeier I
    Methods Enzymol; 2023; 684():209-252. PubMed ID: 37230590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog.
    Liszczak G; Marmorstein R
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):14652-7. PubMed ID: 23959863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of human Naa60 (NatF), a Golgi-localized bi-functional acetyltransferase.
    Chen JY; Liu L; Cao CL; Li MJ; Tan K; Yang X; Yun CH
    Sci Rep; 2016 Aug; 6():31425. PubMed ID: 27550639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategy for determination of in vitro protein acetylation sites by using isotope-labeled acetyl coenzyme A and liquid chromatography-mass spectrometry.
    Wu HY; Huang FY; Chang YC; Hsieh MC; Liao PC
    Anal Chem; 2008 Aug; 80(16):6178-89. PubMed ID: 18616279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo.
    Foyn H; Van Damme P; Støve SI; Glomnes N; Evjenth R; Gevaert K; Arnesen T
    Mol Cell Proteomics; 2013 Jan; 12(1):42-54. PubMed ID: 23043182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Play between Human N-α-acetyltransferase D and H4-mutant Histones: Molecular Dynamics Study.
    Rathod SB; Srivastava KR
    Curr Protein Pept Sci; 2023; 24(4):339-354. PubMed ID: 36924088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating Peptide-Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N-Terminal and Lysine Acetyltransferases.
    Sindlinger J; Schön S; Eirich J; Kirchgäßner S; Finkemeier I; Schwarzer D
    Chembiochem; 2022 Sep; 23(17):e202200255. PubMed ID: 35776679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-terminal Acetylation Levels Are Maintained During Acetyl-CoA Deficiency in
    Varland S; Aksnes H; Kryuchkov F; Impens F; Van Haver D; Jonckheere V; Ziegler M; Gevaert K; Van Damme P; Arnesen T
    Mol Cell Proteomics; 2018 Dec; 17(12):2309-2323. PubMed ID: 30150368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specificity and versatility of substrate binding sites in four catalytic domains of human N-terminal acetyltransferases.
    Grauffel C; Abboud A; Liszczak G; Marmorstein R; Arnesen T; Reuter N
    PLoS One; 2012; 7(12):e52642. PubMed ID: 23285125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and thermodynamic analyses of Salmonella enterica Pat, a multidomain, multimeric N(ε)-lysine acetyltransferase involved in carbon and energy metabolism.
    Thao S; Escalante-Semerena JC
    mBio; 2011; 2(5):. PubMed ID: 22010215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-translational, Post-translational, and Non-catalytic Roles of N-Terminal Acetyltransferases.
    Aksnes H; Ree R; Arnesen T
    Mol Cell; 2019 Mar; 73(6):1097-1114. PubMed ID: 30878283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The world of protein acetylation.
    Drazic A; Myklebust LM; Ree R; Arnesen T
    Biochim Biophys Acta; 2016 Oct; 1864(10):1372-401. PubMed ID: 27296530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of In Vitro Protein Lysine Acetylation by Reversed Phase HPLC.
    Njeri CW; Ononye OE; Balakrishnan L
    Methods Mol Biol; 2019; 1983():49-56. PubMed ID: 31087292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling.
    Dinh TV; Bienvenut WV; Linster E; Feldman-Salit A; Jung VA; Meinnel T; Hell R; Giglione C; Wirtz M
    Proteomics; 2015 Jul; 15(14):2426-35. PubMed ID: 25951519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A density functional theory study on the role of His-107 in arylamine N-acetyltransferase 2 acetylation.
    Qiao QA; Yang C; Qu R; Jin Y; Wang M; Zhang Z; Xu Q; Yu Z
    Biophys Chem; 2006 Aug; 122(3):215-20. PubMed ID: 16644091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homology modeling and prediction of the amino acid residues participating in the transfer of acetyl-CoA to arylalkylamine by the N-acetyltransferase from Chryseobacterium sp.
    Takenaka S; Ozeki T; Tanaka K; Yoshida KI
    Biotechnol Lett; 2017 Nov; 39(11):1699-1707. PubMed ID: 28721586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.