These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28315245)

  • 21. Doublet N-Terminal Oriented Proteomics for N-Terminomics and Proteolytic Processing Identification.
    Westermann B; Jacome ASV; Rompais M; Carapito C; Schaeffer-Reiss C
    Methods Mol Biol; 2017; 1574():77-90. PubMed ID: 28315244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tryptic Peptides Bearing C-Terminal Dimethyllysine Need to Be Considered during the Analysis of Lysine Dimethylation in Proteomic Study.
    Chen M; Zhang M; Zhai L; Hu H; Liu P; Tan M
    J Proteome Res; 2017 Sep; 16(9):3460-3469. PubMed ID: 28730820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo assessment of protease dynamics in cutaneous wound healing by degradomics analysis of porcine wound exudates.
    Sabino F; Hermes O; Egli FE; Kockmann T; Schlage P; Croizat P; Kizhakkedathu JN; Smola H; auf dem Keller U
    Mol Cell Proteomics; 2015 Feb; 14(2):354-70. PubMed ID: 25516628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ labeling reveals a diverse MMP-2 substrate degradome.
    Dean RA; Overall CM
    Mol Cell Proteomics; 2007 Apr; 6(4):611-23. PubMed ID: 17200105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome.
    Doucet A; Butler GS; Rodríguez D; Prudova A; Overall CM
    Mol Cell Proteomics; 2008 Oct; 7(10):1925-51. PubMed ID: 18596063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomic discovery of protease substrates.
    Schilling O; Overall CM
    Curr Opin Chem Biol; 2007 Feb; 11(1):36-45. PubMed ID: 17194619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. System-Wide Profiling of Protein Amino Termini from Formalin-Fixed, Paraffin-Embedded Tissue Specimens for the Identification of Novel Substrates.
    Lai ZW; Schilling O
    Methods Mol Biol; 2017; 1574():105-114. PubMed ID: 28315246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative proteomics in plant protease substrate identification.
    Demir F; Niedermaier S; Villamor JG; Huesgen PF
    New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A proteomic approach for the discovery of protease substrates.
    Bredemeyer AJ; Lewis RM; Malone JP; Davis AE; Gross J; Townsend RR; Ley TJ
    Proc Natl Acad Sci U S A; 2004 Aug; 101(32):11785-90. PubMed ID: 15280543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of Factors Produced and Secreted by Mesenchymal Stromal Cells with the SILAC Method.
    Rocha B; Calamia V; Blanco FJ; Ruiz-Romero C
    Methods Mol Biol; 2016; 1416():551-65. PubMed ID: 27236695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of CK2 specificity and substrates by proteome-derived peptide libraries.
    Wang C; Ye M; Bian Y; Liu F; Cheng K; Dong M; Dong J; Zou H
    J Proteome Res; 2013 Aug; 12(8):3813-21. PubMed ID: 23808766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integration of Two In-depth Quantitative Proteomics Approaches Determines the Kallikrein-related Peptidase 7 (KLK7) Degradome in Ovarian Cancer Cell Secretome.
    Silva LM; Kryza T; Stoll T; Hoogland C; Dong Y; Stephens CR; Hastie ML; Magdolen V; Kleifeld O; Gorman JJ; Clements JA
    Mol Cell Proteomics; 2019 May; 18(5):818-836. PubMed ID: 30705123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spike-In SILAC Approach for Proteomic Analysis of Ex Vivo Microglia.
    Pinho JPC; Bell-Temin H; Liu B; Stevens SM
    Methods Mol Biol; 2017; 1598():295-312. PubMed ID: 28508369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new insight into the impact of different proteases on SILAC quantitative proteome of the mouse liver.
    Ma J; Li W; Lv Y; Chang C; Wu S; Song L; Ding C; Wei H; He F; Jiang Y; Zhu Y
    Proteomics; 2013 Aug; 13(15):2238-42. PubMed ID: 23703833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Profiling of Protein N-Termini and Their Modifications in Complex Samples.
    Demir F; Niedermaier S; Kizhakkedathu JN; Huesgen PF
    Methods Mol Biol; 2017; 1574():35-50. PubMed ID: 28315242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CLIPPER: an add-on to the Trans-Proteomic Pipeline for the automated analysis of TAILS N-terminomics data.
    auf dem Keller U; Overall CM
    Biol Chem; 2012 Dec; 393(12):1477-83. PubMed ID: 23667905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determining Protease Substrates Within a Complex Protein Background Using the PROtein TOpography and Migration Analysis Platform (PROTOMAP).
    Fuhrman-Luck RA; Silva LM; Hastie ML; Gorman JJ; Clements JA
    Methods Mol Biol; 2017; 1574():145-170. PubMed ID: 28315249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ProC-TEL: Profiling of Protein C-Termini by Enzymatic Labeling.
    Duan W; Xu G
    Methods Mol Biol; 2017; 1574():135-144. PubMed ID: 28315248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.