These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 28315252)

  • 21. Proteomic discovery of protease substrates.
    Schilling O; Overall CM
    Curr Opin Chem Biol; 2007 Feb; 11(1):36-45. PubMed ID: 17194619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Protease Cleavage Sites and Substrates in Cancer by Carboxy-TAILS (C-TAILS).
    Solis N; Overall CM
    Methods Mol Biol; 2018; 1731():15-28. PubMed ID: 29318539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative proteomics in plant protease substrate identification.
    Demir F; Niedermaier S; Villamor JG; Huesgen PF
    New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin.
    Giansanti P; Tsiatsiani L; Low TY; Heck AJ
    Nat Protoc; 2016 May; 11(5):993-1006. PubMed ID: 27123950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. System-Wide Profiling of Protein Amino Termini from Formalin-Fixed, Paraffin-Embedded Tissue Specimens for the Identification of Novel Substrates.
    Lai ZW; Schilling O
    Methods Mol Biol; 2017; 1574():105-114. PubMed ID: 28315246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products.
    Kleifeld O; Doucet A; auf dem Keller U; Prudova A; Schilling O; Kainthan RK; Starr AE; Foster LJ; Kizhakkedathu JN; Overall CM
    Nat Biotechnol; 2010 Mar; 28(3):281-8. PubMed ID: 20208520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates.
    Kleifeld O; Doucet A; Prudova A; auf dem Keller U; Gioia M; Kizhakkedathu JN; Overall CM
    Nat Protoc; 2011 Sep; 6(10):1578-611. PubMed ID: 21959240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protease- and acid-catalyzed labeling workflows employing (18)O-enriched water.
    Klingler D; Hardt M
    J Vis Exp; 2013 Feb; (72):e3891. PubMed ID: 23462971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High resolution analysis of snake venom metalloproteinase (SVMP) peptide bond cleavage specificity using proteome based peptide libraries and mass spectrometry.
    Paes Leme AF; Escalante T; Pereira JG; Oliveira AK; Sanchez EF; Gutiérrez JM; Serrano SM; Fox JW
    J Proteomics; 2011 Apr; 74(4):401-10. PubMed ID: 21156218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MS-driven protease substrate degradomics.
    Impens F; Colaert N; Helsens K; Plasman K; Van Damme P; Vandekerckhove J; Gevaert K
    Proteomics; 2010 Mar; 10(6):1284-96. PubMed ID: 20058249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative protease cleavage site profiling using tandem-mass-tag labeling and LC-MALDI-TOF/TOF MS/MS analysis.
    Jakoby T; van den Berg BH; Tholey A
    J Proteome Res; 2012 Mar; 11(3):1812-20. PubMed ID: 22250702
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-Depth Specificity Profiling of Endopeptidases Using Dedicated Mix-and-Split Synthetic Peptide Libraries and Mass Spectrometry.
    Claushuis B; Cordfunke RA; de Ru AH; Otte A; van Leeuwen HC; Klychnikov OI; van Veelen PA; Corver J; Drijfhout JW; Hensbergen PJ
    Anal Chem; 2023 Aug; 95(31):11621-11631. PubMed ID: 37495545
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Doublet N-Terminal Oriented Proteomics for N-Terminomics and Proteolytic Processing Identification.
    Westermann B; Jacome ASV; Rompais M; Carapito C; Schaeffer-Reiss C
    Methods Mol Biol; 2017; 1574():77-90. PubMed ID: 28315244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep profiling of protease substrate specificity enabled by dual random and scanned human proteome substrate phage libraries.
    Zhou J; Li S; Leung KK; O'Donovan B; Zou JY; DeRisi JL; Wells JA
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25464-25475. PubMed ID: 32973096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell-based identification of natural substrates and cleavage sites for extracellular proteases by SILAC proteomics.
    Gioia M; Foster LJ; Overall CM
    Methods Mol Biol; 2009; 539():131-53. PubMed ID: 19377966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protease Activity Profiling via Programmable Phage Display of Comprehensive Proteome-Scale Peptide Libraries.
    Román-Meléndez GD; Venkataraman T; Monaco DR; Larman HB
    Cell Syst; 2020 Oct; 11(4):375-381.e4. PubMed ID: 33099407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Profiling of Protein N-Termini and Their Modifications in Complex Samples.
    Demir F; Niedermaier S; Kizhakkedathu JN; Huesgen PF
    Methods Mol Biol; 2017; 1574():35-50. PubMed ID: 28315242
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global substrate specificity profiling of post-translational modifying enzymes.
    Ivry SL; Meyer NO; Winter MB; Bohn MF; Knudsen GM; O'Donoghue AJ; Craik CS
    Protein Sci; 2018 Mar; 27(3):584-594. PubMed ID: 29168252
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.