BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28315254)

  • 21. Translation of a tumor microenvironment mimicking 3D tumor growth co-culture assay platform to high-content screening.
    Krausz E; de Hoogt R; Gustin E; Cornelissen F; Grand-Perret T; Janssen L; Vloemans N; Wuyts D; Frans S; Axel A; Peeters PJ; Hall B; Cik M
    J Biomol Screen; 2013 Jan; 18(1):54-66. PubMed ID: 22923784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity.
    Massey M; Li JJ; Algar WR
    Methods Mol Biol; 2017; 1530():63-97. PubMed ID: 28150196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imaging Matrix Metalloproteinase Activity Implicated in Breast Cancer Progression.
    Fields GB; Stawikowski MJ
    Methods Mol Biol; 2016; 1406():303-29. PubMed ID: 26820965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A fluorescence resonance energy transfer-based fluorometer assay for screening anti-coxsackievirus B3 compounds.
    Cantera JL; Chen W; Yates MV
    J Virol Methods; 2011 Jan; 171(1):176-82. PubMed ID: 21029747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fully Automated One-Step Production of Functional 3D Tumor Spheroids for High-Content Screening.
    Monjaret F; Fernandes M; Duchemin-Pelletier E; Argento A; Degot S; Young J
    J Lab Autom; 2016 Apr; 21(2):268-80. PubMed ID: 26385905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications for a dual fluorescent human cytomegalovirus in the analysis of viral entry.
    Sampaio KL; Jahn G; Sinzger C
    Methods Mol Biol; 2013; 1064():201-9. PubMed ID: 23996259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Photoconvertible fluorescent protein-based live imaging of mitochondrial fusion.
    Owens GC; Edelman DB
    Methods Mol Biol; 2015; 1313():237-46. PubMed ID: 25947670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional measurement of local proteolytic activity in living cells of invasive and non-invasive tumors.
    Ludwig T; Püttmann S; Bertram H; Tatenhorst L; Paulus W; Oberleithner H; Senner V
    J Cell Physiol; 2005 Mar; 202(3):690-7. PubMed ID: 15389570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and application of a GFP-FRET intracellular caspase assay for drug screening.
    Jones J; Heim R; Hare E; Stack J; Pollok BA
    J Biomol Screen; 2000 Oct; 5(5):307-18. PubMed ID: 11080689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of a keratinocyte-based screening model for antipsoriatic drugs using green fluorescent protein under the control of an endogenous promoter.
    Pol A; van Ruissen F; Schalkwijk J
    J Biomol Screen; 2002 Aug; 7(4):325-32. PubMed ID: 12230886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time.
    Yang M; Jiang P; Hoffman RM
    Cancer Res; 2007 Jun; 67(11):5195-200. PubMed ID: 17545599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiplexed assays by high-content imaging for assessment of GPCR activity.
    Ross DA; Lee S; Reiser V; Xue J; Alves K; Vaidya S; Kreamer A; Mull R; Hudak E; Hare T; Detmers PA; Lingham R; Ferrer M; Strulovici B; Santini F
    J Biomol Screen; 2008 Jul; 13(6):449-55. PubMed ID: 18519922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale imaging and quantification of local proteolytic activity.
    Kusick S; Bertram H; Oberleithner H; Ludwig T
    J Cell Physiol; 2005 Sep; 204(3):767-74. PubMed ID: 15744770
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hu/Mu ProtIn oligonucleotide microarray: dual-species array for profiling protease and protease inhibitor gene expression in tumors and their microenvironment.
    Schwartz DR; Moin K; Yao B; Matrisian LM; Coussens LM; Bugge TH; Fingleton B; Acuff HB; Sinnamon M; Nassar H; Platts AE; Krawetz SA; Linebaugh BE; Sloane BF
    Mol Cancer Res; 2007 May; 5(5):443-54. PubMed ID: 17510311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated tracking of tumor-stroma morphology in microtissues identifies functional targets within the tumor microenvironment for therapeutic intervention.
    Åkerfelt M; Bayramoglu N; Robinson S; Toriseva M; Schukov HP; Härmä V; Virtanen J; Sormunen R; Kaakinen M; Kannala J; Eklund L; Heikkilä J; Nees M
    Oncotarget; 2015 Oct; 6(30):30035-56. PubMed ID: 26375443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging proteolysis by living human glioma cells.
    Sameni M; Dosescu J; Sloane BF
    Biol Chem; 2001 May; 382(5):785-8. PubMed ID: 11517931
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling the cholesteatoma microenvironment: coculture of HaCaT keratinocytes with WS1 fibroblasts induces MMP-2 activation, invasive phenotype, and proteolysis of the extracellular matrix.
    Laeeq S; Faust R
    Laryngoscope; 2007 Feb; 117(2):313-8. PubMed ID: 17204986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional screening with a live cell imaging-based random cell migration assay.
    van Roosmalen W; Le Dévédec SE; Zovko S; de Bont H; van de Water B
    Methods Mol Biol; 2011; 769():435-48. PubMed ID: 21748693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Vitro Engulfment Assay to Measure Phagocytic Activity of Astrocytes Using Synaptosomes.
    Byun YG; Chung WS
    Methods Mol Biol; 2019; 1938():155-168. PubMed ID: 30617979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.