These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28315321)

  • 1. The functional interplay between the HIF pathway and the ubiquitin system - more than a one-way road.
    Günter J; Ruiz-Serrano A; Pickel C; Wenger RH; Scholz CC
    Exp Cell Res; 2017 Jul; 356(2):152-159. PubMed ID: 28315321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of HIF by the von Hippel-Lindau tumour suppressor: implications for cellular oxygen sensing.
    Mole DR; Maxwell PH; Pugh CW; Ratcliffe PJ
    IUBMB Life; 2001 Jul; 52(1-2):43-7. PubMed ID: 11795592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen sensors and angiogenesis.
    Maxwell PH; Ratcliffe PJ
    Semin Cell Dev Biol; 2002 Feb; 13(1):29-37. PubMed ID: 11969369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIF-1alpha and EPAS ubiquitination mediated by the VHL tumour suppressor involves flexibility in the ubiquitination mechanism, similar to other RING E3 ligases.
    Paltoglou S; Roberts BJ
    Oncogene; 2007 Jan; 26(4):604-9. PubMed ID: 16862177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Up-regulation of hypoxia-inducible factors HIF-1alpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function.
    Krieg M; Haas R; Brauch H; Acker T; Flamme I; Plate KH
    Oncogene; 2000 Nov; 19(48):5435-43. PubMed ID: 11114720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular targets from VHL studies into the oxygen-sensing pathway.
    Maynard MA; Ohh M
    Curr Cancer Drug Targets; 2005 Aug; 5(5):345-56. PubMed ID: 16101382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha.
    Baek JH; Mahon PC; Oh J; Kelly B; Krishnamachary B; Pearson M; Chan DA; Giaccia AJ; Semenza GL
    Mol Cell; 2005 Feb; 17(4):503-12. PubMed ID: 15721254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex.
    Maynard MA; Qi H; Chung J; Lee EH; Kondo Y; Hara S; Conaway RC; Conaway JW; Ohh M
    J Biol Chem; 2003 Mar; 278(13):11032-40. PubMed ID: 12538644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors.
    Aprelikova O; Chandramouli GV; Wood M; Vasselli JR; Riss J; Maranchie JK; Linehan WM; Barrett JC
    J Cell Biochem; 2004 Jun; 92(3):491-501. PubMed ID: 15156561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein.
    Tanimoto K; Makino Y; Pereira T; Poellinger L
    EMBO J; 2000 Aug; 19(16):4298-309. PubMed ID: 10944113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pVHL-hIF-1 system. A key mediator of oxygen homeostasis.
    Maxwell PH; Pugh CW; Ratcliffe PJ
    Adv Exp Med Biol; 2001; 502():365-76. PubMed ID: 11950150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis.
    Maxwell PH; Wiesener MS; Chang GW; Clifford SC; Vaux EC; Cockman ME; Wykoff CC; Pugh CW; Maher ER; Ratcliffe PJ
    Nature; 1999 May; 399(6733):271-5. PubMed ID: 10353251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors.
    Zimmer M; Doucette D; Siddiqui N; Iliopoulos O
    Mol Cancer Res; 2004 Feb; 2(2):89-95. PubMed ID: 14985465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes.
    Hicks KC; Patel TB
    J Biol Chem; 2016 Aug; 291(32):16787-801. PubMed ID: 27281823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels.
    Masson N; Ratcliffe PJ
    J Cell Sci; 2003 Aug; 116(Pt 15):3041-9. PubMed ID: 12829734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity.
    Mahon PC; Hirota K; Semenza GL
    Genes Dev; 2001 Oct; 15(20):2675-86. PubMed ID: 11641274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the C-terminal alpha-helical domain of the von Hippel-Lindau protein in its E3 ubiquitin ligase activity.
    Lewis MD; Roberts BJ
    Oncogene; 2004 Mar; 23(13):2315-23. PubMed ID: 14691445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Von Hippel-Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer.
    Maynard MA; Ohh M
    Am J Nephrol; 2004; 24(1):1-13. PubMed ID: 14654728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of E3 Ligases and Deubiquitinases in the Control of HIF-α Subunit Abundance.
    Kubaichuk K; Kietzmann T
    Cells; 2019 Jun; 8(6):. PubMed ID: 31208103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin pathway in VHL cancer syndrome.
    Ohh M
    Neoplasia; 2006 Aug; 8(8):623-9. PubMed ID: 16925945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.